102 research outputs found

    Emergence of Collective Territorial Defense in Bacterial Communities: Horizontal Gene Transfer Can Stabilize Microbiomes

    Get PDF
    Multispecies bacterial communities such as the microbiota of the gastrointestinal tract can be remarkably stable and resilient even though they consist of cells and species that compete for resources and also produce a large number of antimicrobial agents. Computational modeling suggests that horizontal transfer of resistance genes may greatly contribute to the formation of stable and diverse communities capable of protecting themselves with a battery of antimicrobial agents while preserving a varied metabolic repertoire of the constituent species. In other words horizontal transfer of resistance genes makes a community compatible in terms of exoproducts and capable to maintain a varied and mature metagenome. The same property may allow microbiota to protect a host organism, or if used as a microbial therapy, to purge pathogens and restore a protective environment

    Bacterial Cooperation Causes Systematic Errors in Pathogen Risk Assessment due to the Failure of the Independent Action Hypothesis

    Get PDF
    The Independent Action Hypothesis (IAH) states that pathogenic individuals (cells, spores, virus particles etc.) behave independently of each other, so that each has an independent probability of causing systemic infection or death. The IAH is not just of basic scientific interest; it forms the basis of our current estimates of infectious disease risk in humans. Despite the important role of the IAH in managing disease interventions for food and water-borne pathogens, experimental support for the IAH in bacterial pathogens is indirect at best. Moreover since the IAH was first proposed, cooperative behaviors have been discovered in a wide range of microorganisms, including many pathogens. A fundamental principle of cooperation is that the fitness of individuals is affected by the presence and behaviors of others, which is contrary to the assumption of independent action. In this paper, we test the IAH in Bacillus thuringiensis (B.t), a widely occurring insect pathogen that releases toxins that benefit others in the inoculum, infecting the diamondback moth, Plutella xylostella. By experimentally separating B.t. spores from their toxins, we demonstrate that the IAH fails because there is an interaction between toxin and spore effects on mortality, where the toxin effect is synergistic and cannot be accommodated by independence assumptions. Finally, we show that applying recommended IAH dose-response models to high dose data leads to systematic overestimation of mortality risks at low doses, due to the presence of synergistic pathogen interactions. Our results show that cooperative secretions can easily invalidate the IAH, and that such mechanistic details should be incorporated into pathogen risk analysis

    In silico evolution of signaling networks using rule-based models: bistable response dynamics

    Full text link
    One of the ultimate goals in biology is to understand the design principles of biological systems. Such principles, if they exist, can help us better understand complex, natural biological systems and guide the engineering of de novo ones. Towards deciphering design principles, in silico evolution of biological systems with proper abstraction is a promising approach. Here, we demonstrate the application of in silico evolution combined with rule-based modelling for exploring design principles of cellular signaling networks. This application is based on a computational platform, called BioJazz, which allows in silico evolution of signaling networks with unbounded complexity. We provide a detailed introduction to BioJazz architecture and implementation and describe how it can be used to evolve and/or design signaling networks with defined dynamics. For the latter, we evolve signaling networks with switch-like response dynamics and demonstrate how BioJazz can result in new biological insights on network structures that can endow bistable response dynamics. This example also demonstrated both the power of BioJazz in evolving and designing signaling networks and its limitations at the current stage of development.Comment: 24 pages, 7 figure

    Opposing effects of final population density and stress on Escherichia coli mutation rate

    Get PDF
    Evolution depends on mutations. For an individual genotype, the rate at which mutations arise is known to increase with various stressors (stress-induced mutagenesis-SIM) and decrease at high final population density (density-associated mutation-rate plasticity-DAMP). We hypothesised that these two forms of mutation-rate plasticity would have opposing effects across a nutrient gradient. Here we test this hypothesis, culturing Escherichia coli in increasingly rich media. We distinguish an increase in mutation rate with added nutrients through SIM (dependent on error-prone polymerases Pol IV and Pol V) and an opposing effect of DAMP (dependent on MutT, which removes oxidised G nucleotides). The combination of DAMP and SIM results in a mutation rate minimum at intermediate nutrient levels (which can support 7 × 10  cells ml ). These findings demonstrate a strikingly close and nuanced relationship of ecological factors-stress and population density-with mutation, the fuel of all evolution

    Cheaters allow cooperators to prosper

    Get PDF
    Cooperation based on the production of costly common goods is observed throughout nature. This is puzzling, as cooperation is vulnerable to exploitation by defectors which enjoy a fitness advantage by consuming the common good without contributing fairly. Depletion of the common good can lead to population collapse and the destruction of cooperation. However, population collapse implies small population size, which, in a structured population, is known to favor cooperation. This happens because small population size increases variability in cooperator frequency across different locations. Since individuals in cooperator-dominated locations (which are most likely cooperators) will grow more than those in defector-dominated locations (which are most likely defectors), cooperators can outgrow defectors globally despite defectors outgrowing cooperators in each location. This raises the possibility that defectors can lead to conditions that sometimes rescue cooperation from defector-induced destruction. We demonstrate multiple mechanisms through which this can occur, using an individual-based approach to model stochastic birth, death, migration, and mutation events. First, during defector-induced population collapse, defectors occasionally go extinct before cooperators by chance, which allows cooperators to grow. Second, empty locations, either preexisting or created by defector-induced population extinction, can favor cooperation because they allow cooperator but not defector migrants to grow. These factors lead to the counterintuitive result that the initial presence of defectors sometimes allows better survival of cooperation compared to when defectors are initially absent. Finally, we find that resource limitation, inducible by defectors, can select for mutations adaptive to resource limitation. When these mutations are initially present at low levels or continuously generated at a moderate rate, they can favor cooperation by further reducing local population size. We predict that in a structured population, small population sizes precipitated by defectors provide a "built-in" mechanism for the persistence of cooperation

    Pseudomonas aeruginosa mutants defective in glucose uptake have pleiotropic phenotype and altered virulence in non-mammal infection models

    Get PDF
    Pseudomonas spp. are endowed with a complex pathway for glucose uptake that relies on multiple transporters. In this work we report the construction and characterization of Pseudomonas aeruginosa single and multiple mutants with unmarked deletions of genes encoding outer membrane (OM) and inner membrane (IM) proteins involved in glucose uptake. We found that a triple \u394gltKGF \u394gntP \u394kguT mutant lacking all known IM transporters (named GUN for Glucose Uptake Null) is unable to grow on glucose as unique carbon source. More than 500 genes controlling both metabolic functions and virulence traits show differential expression in GUN relative to the parental strain. Consistent with transcriptomic data, the GUN mutant displays a pleiotropic phenotype. Notably, the genome-wide transcriptional profile and most phenotypic traits differ between the GUN mutant and the wild type strain irrespective of the presence of glucose, suggesting that the investigated genes may have additional roles besides glucose transport. Finally, mutants carrying single or multiple deletions in the glucose uptake genes showed attenuated virulence relative to the wild type strain in Galleria mellonella, but not in Caenorhabditis elegans infection model, supporting the notion that metabolic functions may deeply impact P. aeruginosa adaptation to specific environments found inside the host

    Competition sensing: the social side of bacterial stress responses.

    No full text
    The field of ecology has long recognized two types of competition: exploitative competition, which occurs indirectly through resource consumption, and interference competition, whereby one individual directly harms another. Here, we argue that these two forms of competition have played a dominant role in the evolution of bacterial regulatory networks. In particular, we argue that several of the major bacterial stress responses detect ecological competition by sensing nutrient limitation (exploitative competition) or direct cell damage (interference competition). We call this competition sensing: a physiological response that detects harm caused by other cells and that evolved, at least in part, for that purpose. A key prediction of our hypothesis is that bacteria will counter-attack when they sense ecological competition but not when they sense abiotic stress. In support of this hypothesis, we show that bacteriocins and antibiotics are frequently upregulated by stress responses to nutrient limitation and cell damage but very rarely upregulated by stress responses to heat or osmotic stress, which typically are not competition related. We argue that stress responses, in combination with the various mechanisms that sense secretions, enable bacteria to infer the presence of ecological competition and navigate the 'microbe-kill-microbe' world in which they live

    Making pathogens sociable: the emergence of high relatedness through limited host invasibility

    Get PDF
    Cooperation depends upon high relatedness, the high genetic similarity of interacting partners relative to the wider population. For pathogenic bacteria, which show diverse cooperative traits, the population processes that determine relatedness are poorly understood. Here, we explore whether within-host dynamics can produce high relatedness in the insect pathogen Bacillus thuringiensis. We study the effects of host/pathogen interactions on relatedness via a model of host invasion and fit parameters to competition experiments with marked strains. We show that invasibility is a key parameter for determining relatedness and experimentally demonstrate the emergence of high relatedness from well-mixed inocula. We find that a single infection cycle results in a bottleneck with a similar level of relatedness to those previously reported in the field. The bottlenecks that are a product of widespread barriers to infection can therefore produce the population structure required for the evolution of cooperative virulence
    • 

    corecore