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Abstract

Multispecies bacterial communities such as the microbiota of the gastrointestinal tract can be remarkably stable and
resilient even though they consist of cells and species that compete for resources and also produce a large number of
antimicrobial agents. Computational modeling suggests that horizontal transfer of resistance genes may greatly contribute
to the formation of stable and diverse communities capable of protecting themselves with a battery of antimicrobial agents
while preserving a varied metabolic repertoire of the constituent species. In other words horizontal transfer of resistance
genes makes a community compatible in terms of exoproducts and capable to maintain a varied and mature metagenome.
The same property may allow microbiota to protect a host organism, or if used as a microbial therapy, to purge pathogens
and restore a protective environment.
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Introduction

Multispecies microbial communities are a major form of life that

can coexist with many other organisms. It is well known that the

human body carries 10 times more microbial cells than the

number of its own cells. One of the many intriguing properties of

microbial communities is that they can provide protection to their

host organism against infection or colonization by pathogens.

Examples include the protective effects of healthy gut microbiota

[1,2], probiotics [3], or the ability of a healthy rhizosphere to fend-

off plant pathogenic soil bacteria [4]. Little is known about the

mechanisms of such a territorial defense, which is especially

intriguing since it emerges in a wide variety of contexts. One of our

goals is to understand if horizontal gene transfer (HGT) can

contribute to the emergence of protective properties in microbial

communities such as the human microbiota.

Horizontal gene transfer (HGT), i.e. the process by which

bacteria acquire genetic material from neighboring cells [5] is now

considered the key to many important processes, such as, for

instance, the spreading of bacterial antibiotic resistance [6–8].

Dense microbial communities, such as the human gut microbiota

are now considered a hot spot of microbial gene transfer [9]. This

is all the more interesting since it was recently discovered that the

rate of HGT is apparently eight to nine orders of magnitude faster

than previously thought [10]. As a result, rapid microbial

evolution is now believed to be a major factor that can shape

the community structure of microbial consortia [11–13]. The

spreading of resistance genes is especially intriguing in this respect,

since members of a stable microbial community must be resistant/

tolerant to a great number of exoproducts that might be released

by the hundreds or thousands of species constituting a consortium.

There is no doubt that the natural tolerance of bacteria towards

various classes of chemicals may provide a shield against many

antimicrobial agents. However, the spread of specific resistance

genes is also a plausible mechanism that can explain the formation

of mutual resistance within multispecies consortia. We hypothesize

that the resistance of coexisting bacteria towards the exoproducts

present in a consortium is an important prerequisite for a stable

community. One of our goals therefore is to follow the build-up of

this property via a computer simulation of HGT between

coexisting species.

Competition between coexisting species is often classified into

two broad categories: exploitative competition and interference

competition [14–16]. Exploitative or scrambling competition

refers to species competing for exhaustible resources such as

nutrients or space. In contrast, interference competition is a

process by which competing species try to limit growth of

competitors via factors such as antimicrobial substances. A

growing body of evidence from experimental and computer

simulation studies indicate that resource utilization by different

bacterial species can be both cooperative and competitive, and in

particular that cheaters can abuse cooperating species [17].
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Recently it has been suggested that such a competition between

bacteria leads either to a collapse of the community (competitive

exclusion), or to a stable coexistence [18,19], and that the latter

can be mediated by a sharing of signals and public goods [20].

Genetic and mechanistic studies of such interference competition

in bacteria are relatively recent [21], even though there are many

well known classes of antimicrobial compounds that bacteria

deploy against other species [22]. The work we report here is

concerned with this second class of competition, interference

competition. We are particularly interested in how species

coexisting in populated niches become accustomed to the

interference competition of the other species, and how this

acclimation process, that we term community maturation, renders

a microbial community resistant against newcomers.

Here we show that simple computational agents capable of

taking over resistance genes from their immediate neighbors can

form stable and diverse communities that both produce and are

resistant to a large number of antimicrobial agents. This complex

antimicrobial profile leads to a community capable of keeping

invading species away. At the same time, the model also explains

why a transplantation of a mixed microbial community into an

environment dominated by a single highly resistant species can

restore a stable and more mixed equilibrium.

Results

The model
Briefly, the formation of a multispecies microbial community

was simulated with randomly moving computational agents

(representing cells) that could randomly acquire ‘genes’ from the

neighboring agents they were in contact with, i.e. that were within

a certain distance (Figure 1). The computational agents were

equipped with randomly generated genomes consisting of two

types of genes. The first type encoded the production of an

antimicrobial agent (AM, or briefly an antimicrobial, see glossary,

Table 1) that could kill susceptible bacteria. The other type of gene

encoded specific resistance against one specific AM. The rest of

the genome - including the genes responsible for the metabolic

repertoire – was not explicitly represented. In addition the

computational agents were naturally tolerant to a predefined

number of AMs termed the survival threshold (see glossary).

The agents moved randomly on a circular 2D surface and

acquired specific resistance genes from their immediate neighbors

via horizontal gene transfer. Importantly, only specific resistance

genes were exchanged during the simulation. The transfer of genes

necessary for the production of an AM, or genes to confer inherent

resistance, were set to take much longer than any modeling

experiment we intended to run. As a result, the pool of resistance

genes became homogeneous over the experimental period i.e. all

species contained the same resistance genes. The other parts of the

genome remained constant with each species producing a different

set of AMs, and a different metabolic repertoire.

For community evolution experiments, a given number (usually

50) of ‘‘naı̈ve’’ or starting agents were created first. The naı̈ve

agents carried an equal number (typically 1 to 50) of randomly

chosen AM production genes as well as the matching specific

resistance genes. As a result, all computational agents had different

genomes i.e. they represented different species. Before simulation

started, the computational agents were randomly placed in a 2D

circular area, and then they were allowed to complete their life

cycles that included random movement, horizontal gene transfer,

division and/or extinction. As the computational agents were also

allowed to divide during the simulations, certain species became

more abundant while others disappeared. The simulation was left

to proceed until no more HGT occurred in the community (see

Methods for more details).

Simulation outcomes: Community genotypes
During the simulations we monitored the number of species

present, the number of AMs produced, as well as the genome of all

computational agents. It became readily apparent that the

formation of a diverse community was primarily determined by

a few parameters: the speed of horizontal gene transfer, the level of

nonspecific resistance as well as the number of contacts made by

the agents which in turn was determined by the density of the

agent population and/or the speed of random movement.

Mapping out the parameter space then consisted of carrying out

simulation experiments by varying agent parameters in a grid-like

fashion. This exercise required a large number of simulations, each

of them resulting in a final distribution of species and genomes to

be described in numerical as well as biological terms. In order to

facilitate evaluation, we carried out preliminary experiments in

order to explore the types of simulation outcomes. Interestingly,

only two outcomes were observed (Figure 2):

A) Diverse community (A in Figure 2). In this case, the agents

form a homogeneous, mixed population typically consisting of

about 20 species that produce about 100 AMs. One particular

species produces only a few AMs but is resistant to all AMs

produced within the community (II. in Figure 1B). This outcome is

analogous to the formation of a healthy and stable microbial

community with a community metagenome that contains a large

number of AM genes, and a matching number of resistance genes.

Given the relatively large number of AMs produced, and the large

number of resistance genes in each constituent species, such a

community is unlikely to be easily invaded by external species.

B) No diversity (close to monoclonal community, B in Figure 2).

Only one of the species survives, the others die out. An analogous

phenomenon is well known in microbiology laboratories: ad hoc

mixtures of bacterial species generally do not remain unchanged

for long, usually one or few species survive [23,24]. In the

simulations, this scenario is observed if the given conditions do not

allow HGT to take place, meaning that the only surviving species

will have one of the starting genomes.

The evolution process seemed to follow the same general course

both for the diverse and for the monoclonal outcomes (Figure 3). It

consisted of two clearly distinguishable phases: 1) An initial burst

phase, in which the number of surviving species drops to a lower

level, and 2) a subsequent growth phase in which the number of

agents increases but the number of species remains approximately

constant.

Factors governing community evolution
In order to find out the conditions that favor the formation of

diverse and strong communities that produce a large number of

antimicrobials, we carried out a large number of simulation

experiments by systematically varying parameters such as the rate

of horizontal gene transfer, the tolerance threshold (innate, non-

specific tolerance) and the strength of the individual species

(number of AM/resistance gene-pairs) (Figures 4–5). In Figure 4,

the blue areas indicate those conditions where communities are

unable to form (which corresponds to the monoclonal population

in Figure 2). This outcome is seen either when there is no HGT

(the rate is zero or very slow), or the species produce more

antimicrobials than they can tolerate on average (this results in a

diagonal division). On the other hand, the results in Figure 4 also

show that communities can form under a large variety of

parameter combinations. Community strength (expressed as the

number of AM producing and resistance genes) depends on the

Horizontal Gene Transfer in Microbiomes
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rate of HGT, i.e. strong communities that produce many AMs

form if HGT is intensive during the maturation process. This can

be seen in the left panel of Figure 4 as an increase of the red area

towards higher HGT values. The effect of species strength is

summarized in Figure 5. It is apparent that strong species form less

diverse communities, even though the community will form a large

number of AMs. Conversely, weak species that produce a small

number of AMs can form communities more easily, but the

resulting community will be weak in terms of AMs produced. We

note that the genes representing the metabolic capabilities of the

individual species are not explicitly represented in this model, i.e.

species diversity is a direct measure of a community’s metabolic

repertoire. As a result, the optimum lies at intermediate strength

values, i.e. metabolically diverse communities that contain a

relatively large number of AMs can be formed by species of

intermediate strength. In simple terms, superbugs are not team

players in this model.

We also carried out the simulations with various other

parameter settings and found that diversity does not emerge in

conditions that allow exceedingly high levels of agent/agent

contact. Such conditions included high population densities or

high rate of agent movements (data not shown).

Competition experiments
The above tendencies can be validated by population compe-

tition experiments. As an example, Figure 6 shows the competition

of two populations that differ only in their natural tolerance

property. It can be seen that the red population that can tolerate

more AMs grows faster and transmits more species to the final

community than the blue population that is nonspecifically less

resistant. It is worth noting that once a population of blue and red

agents formed, it remained constant for the rest of the simulation.

In other words, once the two species tolerate the AMs of each

other, the community does not necessarily change, at least

according to the present HGT model.

Territorial defense: protection against invading bacteria
Invasion was modeled with naı̈ve or mature communities as

described in the Methods. To a community of 50 computational

agents we added 25 ‘‘invader’’ agents of a single species in which

Figure 1. A contact-based model of horizontal transfer in bacteria. A) Agent A is in contact with those bacteria that are within its
neighborhood (denoted as a dashed circle of radius D). If bacteria B–E have more antimicrobial agent (AM) production genes than the tolerance
threshold, A will die. If not, A will randomly take a number of resistance genes from the cells within this neighborhood. In each simulation step, this
calculation is repeated for all agent models within the community and then the agents move randomly (see methods) B). After a number of
simulation steps, the agents take up all resistance genes present in the community (green lines), the AM production genes (red lines) and the rest of
the genome (grey) remains unchanged.
doi:10.1371/journal.pone.0095511.g001

Table 1. Glossary of terms.

Glossary of terms

Antimicrobial agents or antimicrobials. A general term for the drugs, chemicals, or other substances that either kill or slow the growth of microbial cells. Here, we
use this term for the substances naturally produced by bacteria.

Community strength. We use this term to denote the number of antimicrobials (or resistance genes) produced by a bacterial community.

Diversity: Species diversity is the effective number of different species that are represented in a collection of individuals (a dataset).

Fitness: The extent to which an organism is able to produce offspring in a particular environment. Here, we use the growth rate of a species as a measure of fitness.

Horizontal Gene transfer (HGT) The term refers to the transfer of genes between organisms in a manner other than traditional reproduction. Also termed lateral
gene transfer (LGT).

Invasion, invasivity, invadability: Invasion is the expansion of a species into an area not previously occupied by it. Here, we use this term for a species taking over a
bacterial community. Such a species is termed invasive, and the community is termed invadable.

Multidrug resistance: A term used for bacteria resistant to antibacterial agents having different mechanisms of action.

Natural tolerance: We use this term to denote the inherent ability of bacteria to grow in the presence of a certain number of antimicrobials in their environment.

Specific resistance: The ability of bacteria to grow in the presence of some chemical agents that have a given mechanism of action.

doi:10.1371/journal.pone.0095511.t001
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the species strength, i.e. the number of AM producing and

resistance genes, varied from experiment to experiment (Table 2).

We found that a naı̈ve community could be easily taken over by

the invader population, but the invaders were virtually eliminated

by a mature community. Only highly resistant ‘‘superbugs’’ (rows

4–7 in Table 2) could grow in a mature community. The results

show that a mature community is likely to be more resistant to

external attack than a naı̈ve community in which the constituent

species are not acclimatized to the AMs of each other.

Microbial therapy: Purging a pathogen with a healthy
microbial community

We also considered an opposing scenario whereby a highly

resistant resident population of a single species might be present in

a particular environmental niche and whether a multi-species

‘invading’ consortium could overcome it. This is a biologically

plausible scenario in that clearing antibiotic resistant pathogens

from host organisms is a recurrent and serious problem in both

medicine and agriculture. To test this we investigated a multi-

resistant pathogen capable of forming spores – analogous to the

Figure 2. Composition of the model communities. If horizontal gene transfer is possible, the starting community of computational agents (left)
can evolve to a diverse community (A) in which substantial parts of the starting species are preserved. If horizontal gene transfer is not effective, a
non-diverse, ‘‘monoclonal’’ community will form, with essentially one species (B). The numbers in the diagram represent the average, the error bars
the standard deviation, respectively, calculated from 100 simulations.
doi:10.1371/journal.pone.0095511.g002

Figure 3. Community evolution in time, measured in simulation steps (arbitrary units). A) number of species and B) total number of
computational agents as a function of time. Blue (outcome A): Diverse community; red (outcome B): monoclonal community. The error bars represent
standard deviation of the mean in 100 experiments.
doi:10.1371/journal.pone.0095511.g003
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medically important Clostridium difficile. Broad-spectrum antibiotics

are often used in health care settings following surgery or infection

and can easily wipe out the resident microbiota of the

gastrointestinal tract and/or other physiological regions. This

may (or may not) also include the vegetative cells of C. difficile if

present. However the spores of such species will survive. Upon

cessation of the antibiotic treatment, the microbiota starts to grow

again; however this time with C. difficile at proportionally different

levels (partly because of the spores and partly because it may be

less impacted by the antibiotic than the other microbes). Our

model predicts that once a community forms, its composition will

not change by itself. Accordingly, a distorted community will not

necessarily revert to its original ‘healthy’ state upon cessation of

antibiotic treatment – an effect that has been widely documented

via experimental and clinical investigations [25]. Treating a

dysbiotic microbiota with healthy microbiota seems a promising

avenue and maybe relevant in a wide variety of treatment targets

other than recurrent C.difficile infections [26–29].

In order to simulate this situation, we constructed a series of

resident pathogens that contained a varying number of AM

production and resistance genes, and treated it with a mature

Figure 4. Strength and diversity of the community depends on the rate of horizontal gene transfer and on the properties of the
individual species (number of antimicrobials produced and the natural tolerance to antimicrobials). Note that HGT promotes
community strength (top planes vs. bottom planes). Species carrying few AM genes can form a diverse, but weaker community (black arrows).
doi:10.1371/journal.pone.0095511.g004

Figure 5. Community strength and community diversity (Y-
axis) are adversely affected by the strength of the individual
species (X-axis). Note that this figure is a collapsed version of Figure 4.
doi:10.1371/journal.pone.0095511.g005

Figure 6. Competition of communities differing in their
nonspecific resistance to antimicrobial components. The natural
tolerance (nonspecific resistance) threshold was 10 for the blue and 15
for the red community, respectively. The numbers represent an average
of 25 simulations; the error bars represent standard deviation of the
mean. The starting communities consisted of 200 cell agents from each
of the populations.
doi:10.1371/journal.pone.0095511.g006
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community of cell agents, that on the average contained less genes

than the pathogen, but where the community produced a large

number of AMs. The results in Table 3 show that the pathogen

could in fact be purged under certain conditions, unless it

contained an unusually high number of resistance genes (rows 5-6

in Table 3).

Discussion

We have presented a contact-based computational model of

HGT in which random moving computational agents can acquire

resistance genes from their neighbors. The simulations suggest that

HGT can in fact facilitate the formation of resistant communities

that protect themselves by means of antimicrobial components.

Such mature communities are apparently difficult to invade by

randomly arriving pathogens (Table 2) – the collective territorial

defense can protect both the community and subsequently any

host organism. In addition, an implant of microbiota may be

capable of effectively purging a pathogen from an organism or

environment niche (Table 3). Taken together, our model predicts

that a mature microbial community has properties analogous to

multi-target drugs or cocktail therapies against which it is difficult

to raise effective resistance [30]. In other words we believe that the

presence of a large number of antimicrobial agents may be crucial

for the collective defense and stability of natural microbial

communities by keeping invaders away. This property may be

useful in designing bacterial communities for therapeutic or

probiotic purposes. Another implicit suggestion of the model is

that HGT helps a community preserve a varied metabolic

repertoire and makes it compatible in terms of exoproducts as

well as capable to maintain a varied metagenome.

In terms of limitations of this modeling approach, superbugs (i.e.

computational model agents equipped with a large number of AM

production and/or resistance genes) can always invade a mature

community. However we need to point out that the model does

not indicate how resistant a superbug needs to be to actually

achieve this. That is to say, the model works with symbolic

parameters only and so this result should be interpreted only as a

general indication of superbugs being dangerous (which is a

realistic prediction), and not as saying that such superbugs do or

can exist.

Another limitation of the model is that it does not contain a

metabolic component; it only deals with the compatibility of AM

production and resistance within a community, and not with

resource competition. In the context of community evolution our

model points to the plausible fact that members of a stable

bacterial consortium must become compatible in terms of

secondary metabolites and predicts that HGT may be one of

several mechanisms that mediate this process. On the other hand,

compatibility does not mean stability. Stability of the community

will be determined by resource competition between the compat-

ible species. In other words, we believe that a structure of a

Table 2. Territorial defense: vulnerability of naı̈ve and mature communities to an invading species producing varying number of
antimicrobial agents.

Community 1 (invader)3 Community 2: naive (resident)1,3 Community 2: mature (resident)2,3

#cells #species #AMs #resistances % of survivors3: % of survivors3:

1 25 1 10 10 25 100

2 25 1 20 20 0 100

3 25 1 50 50 0 100

4 25 1 75 75 0 90

5 25 1 100 100 0 53

6 25 1 125 125 0 17

7 25 1 150 150 0 3

1Naive community: 50 cells, on average corresponding to 50 species, harboring a total of 181 AM production genes, and the same number of resistance genes.
2Mature community: 50 cells, corresponding to 15 species harboring a total of 109 AM genes and 180 resistance genes on the average.
3All numbers indicate the average of 100 experiments.
doi:10.1371/journal.pone.0095511.t002

Table 3. Microbial therapy: Purging a pathogen with a transplant of a mature microbial community.

Community 1 (transplant)1 Community 2: single pathogen species (resident)1,2

#cells #species #AMs #resistances #cells #AMs #resistances % survivors

1 25 10 81 180 25 20 20 0

2 25 10 81 180 25 20 50 0

3 25 10 81 180 25 20 75 0

4 25 10 81 180 25 20 100 0

5 25 10 81 180 25 20 125 2

6 25 10 81 180 25 20 150 27

1Mature community.
2All numbers indicate the average of 100 experiments.
doi:10.1371/journal.pone.0095511.t003
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community will depend both on interference competition and on

resource competition.

In summary, we argue, based on computer simulations, that the

resistance of a community against invaders, and the capability of a

community to purge a pathogen from an environmental niche, can

be explained by bacteria exchanging resistance genes and thereby

maturing into a community that has a variety of metabolic and

antimicrobial producing competences. Based on these findings, we

suggest that HGT may be a viable target to study experimentally

with respect to the stability of multi-species microbial communities

and their resistance characteristics. Such investigations are likely to

be highly relevant in terms of the development of treatment

approaches for intractable infections that are currently (or are

likely to be in the near future) resistant to multiple anti-microbial

therapies.

Methods

The model consists of agents (representing cells) that are

dimensionless points randomly moving on a 2D surface. The

simulation proceeds in discrete time-steps, and at every time point

the agents update their genomes as described below in detail. The

model works with symbolic parameters, summarized in Table 4a-

3c.

Space and movement
The agents move within a unit circle on a 2D surface (similar to

a Petri dish). At the beginning of the simulation, agents are

randomly placed within the unit circle, with the location of agent A

at time t denoted by At
r~ x,yð Þ At

r

�� ���� ��v1
� �

At each time step, the

agents move a step of length d in a random direction athat can be

formally denoted as: At
r~At{1

r zd cos að Þ,sin að Þð Þ (equation 1).

When an agent moves outside the unit circle, it is relocated back

within the circle by At
r~At

r= At
r

�� ���� ��.
Cell-agents

200 antimicrobial factor producing genes (AMP) and 200

antimicrobial resistance genes (AMR) are denoted by numbers

1,…,200. Agents have a random genome, and a randomly chosen

subset of AMP and AMR, respectively. Formally, a predetermined

number of antimicrobial factor producing genes selected from

AAMP( 1,2, . . . ,200f g are assigned to an agent A, and the

matching resistance genes selected from AAMR( 1,2, . . . ,200f g
are also assigned to it.

It is assumed that an antimicrobial (AM) acts within a given

radius DAM around agent A that produces it. We call the circle of

radius D the ‘‘contact neighborhood’’ of agent A and denote the set

of agents within this circle by Bt
A~ B : Bt

r{At
r

�� ���� ��vD
� �

. Agents

in BA
t produce a number of AMs, against which agent A may or

may not be specifically resistant. NAM is the number of AMs

against which agent A does not have a specific resistance gene.

Agent A dies (i.e. it is deleted from the simulation) if NAM is

greater than the survival threshold ST. Formally, an agent A dies if

[
B[Bt

A

BAFP

8><
>:

9>=
>;\AAFR

�������

�������
wST : ðequation 2Þ

ST is a measure of aspecific resistance since ST is the number of

antimicrobial factors that an agent can tolerate.

Agents are capable of acquiring new resistance genes from other

agents within the contact neighborhood via HGT. This is formally

Table 4. Model parameters for initialization

Parameters Description Default value

Number of bacteria Number of agents at the beginning randomly generated 50

Dish radius Radius of the circle in which the cell agents can move 2

Number of AM Number of antimicrobial factors 200

Number of resistances Number of resistance genes 200

No of genes Number of randomly chosen AM-resistance gene pairs in a cell-agent at
the beginning of the simulation

10

Termination The condition when the simulation stops 95 % of the occuring resistance genes were
spread

Model parameters for horizontal gene transfer (HGT) and movement

Parameters Description Default value

ST Survival threshold: The number of non-specific resistance that an agent can endure 4

D The radius within which a specific resistance gene takes effect 0.2

HGT frequency The frequency of HGT per iteration for one agent 1

d The length of a step to a random direction 0.05

Model parameters for population related variables

Parameters Description Default value

Nmax Maximum size of the population 50

m Division rate, the percentage of the population that divides 0.1

Division frequency After every 10 iterations

Death rate The percentage of the population that dies 0.1

Death frequency After every 40 iterations

doi:10.1371/journal.pone.0095511.t004
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written as

At
AFR~At{1

AFR|frjrandomly choosen r [
[

B[t{1
A

Bt{1
AFRg:ðequation 3Þ

The genes acquired via HGT are randomly picked from the

genes present in the neighboring cells, and if an agent randomly

picks a gene it already has, no transfer will occur. This ensures that

the number of HGT slows down over time.

Population growth and decay

At given time intervals, a certain percentage of the agents divide

i.e. produces an offspring that has the same genome as the parent.

The agent population growth follows a sigmoid curve described by

the Richards model [31]. The portion of the agents to be

duplicated is calculated by

dN

dt
~m(N)N, where m(N)~m 1{

N

Nmax

� �
, ðequation 4Þ

where m is the maximum specific growth rate, N is the size of the

population at time t, and Nmax is the maximum population that can

be sustained (set to 400 in all of our experiments). At given

intervals a certain percentage of the population dies (i.e. some

randomly selected agents are deleted). The complete life cycle of

an agent can be seen in Figure 7.

Community evolution experiments
At the beginning of the experiment, a starting population of 400

agents was created by randomly choosing a specified set of AM

production and resistance genes. Theses agents, which we term as

naı̈ve, were randomly placed on the circular surface, according to

an even distribution. During the simulation, the agents performed

the functions described in Figure 7 and equations 1-3, at every

given time step. As a resulţ the specific resistance genes spread in

the population, and the population grew according to the sigmoid

curve described by equation 4. The simulations were terminated

when the change in the population content or the genome was not

significant compared to the previous iterations. More precisely, the

simulations were terminated when either no agents had died

according to equation 2 in the previous 50 iterations or when 95

per cent of the resistance genes had been spread via HGT. We

term the resulting agent populations as mature.

Each agent in the starting population was given a cell line

identifier, which was also passed on to its progeny. The starting

and finishing agent populations were characterized by the number

of cell lines and number of AMP and AMR genes present in the

population. Simulations were run in 10 repetitions, and results

were presented as progress curves, representing the average of a

given variable with error bars representing the standard deviation

of the mean.

Population competition experiments
For the competition experiments, we used mature populations

produced by the evolution experiments described in the previous

section. As a rule, two populations of equal size were placed on the

circular surface and the simulations were allowed to proceed as

described above. The simulations proceeded until the populations

either stabilized or one of them died out.
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