849 research outputs found
Chronic dermatomycoses of the foot as risk factors for acute bacterial cellulitis of the leg: A case-control study
Objective: To assess the role of foot dermatomycosis ( tinea pedis and onychomycosis) and other candidate risk factors in the development of acute bacterial cellulitis of the leg. Methods: A case-control study, including 243 patients ( cases) with acute bacterial cellulitis of the leg and 467 controls, 2 per case, individually matched for gender, age (+/-5 years), hospital and admission date (+/-2 months). Results: Overall, mycology-proven foot dermatomycosis was a significant risk factor for acute bacterial cellulitis (odds ratio, OR: 2.4; p < 0.001), as were tinea pedis interdigitalis (OR: 3.2; p < 0.001), tinea pedis plantaris (OR: 1.7; p = 0.005) and onychomycosis (OR: 2.2; p < 0.001) individually. Other risk factors included: disruption of the cutaneous barrier, history of bacterial cellulitis, chronic venous insufficiency and leg oedema. Conclusions: Tinea pedis and onychomycosis were found to be significant risk factors for acute bacterial cellulitis of the leg that are readily amenable to treatment with effective pharmacological therapy. Copyright (C) 2004 S. Karger AG, Basel
Massive type IIA string theory cannot be strongly coupled
Understanding the strong coupling limit of massive type IIA string theory is
a longstanding problem. We argue that perhaps this problem does not exist;
namely, there may be no strongly coupled solutions of the massive theory. We
show explicitly that massive type IIA string theory can never be strongly
coupled in a weakly curved region of space-time. We illustrate our general
claim with two classes of massive solutions in AdS4xCP3: one, previously known,
with N = 1 supersymmetry, and a new one with N = 2 supersymmetry. Both
solutions are dual to d = 3 Chern-Simons-matter theories. In both these massive
examples, as the rank N of the gauge group is increased, the dilaton initially
increases in the same way as in the corresponding massless case; before it can
reach the M-theory regime, however, it enters a second regime, in which the
dilaton decreases even as N increases. In the N = 2 case, we find
supersymmetry-preserving gauge-invariant monopole operators whose mass is
independent of N. This predicts the existence of branes which stay light even
when the dilaton decreases. We show that, on the gravity side, these states
originate from D2-D0 bound states wrapping the vanishing two-cycle of a
conifold singularity that develops at large N.Comment: 43 pages, 5 figures. v2: added reference
Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction
We show that a class of Einstein-Maxwell-Dilaton (EMD) theories are related
to higher dimensional AdS-Maxwell gravity via a dimensional reduction over
compact Einstein spaces combined with continuation in the dimension of the
compact space to non-integral values (`generalized dimensional reduction').
This relates (fairly complicated) black hole solutions of EMD theories to
simple black hole/brane solutions of AdS-Maxwell gravity and explains their
properties. The generalized dimensional reduction is used to infer the
holographic dictionary and the hydrodynamic behavior for this class of theories
from those of AdS. As a specific example, we analyze the case of a black brane
carrying a wave whose universal sector is described by gravity coupled to a
Maxwell field and two neutral scalars. At thermal equilibrium and finite
chemical potential the two operators dual to the bulk scalar fields acquire
expectation values characterizing the breaking of conformal and generalized
conformal invariance. We compute holographically the first order transport
coefficients (conductivity, shear and bulk viscosity) for this system.Comment: v2, Important additions: (1) discussion of the entropy current, (2)
postulated zeta/eta bound is generically violated. Some comments and
references added, typos corrected. 50 page
Hierarchy Theory of Evolution and the Extended Evolutionary Synthesis: Some Epistemic Bridges, Some Conceptual Rifts
Contemporary evolutionary biology comprises a plural landscape of multiple co-existent conceptual frameworks and strenuous voices that disagree on the nature and scope of evolutionary theory. Since the mid-eighties, some of these conceptual frameworks have denounced the ontologies of the Modern Synthesis and of the updated Standard Theory of Evolution as unfinished or even flawed. In this paper, we analyze and compare two of those conceptual frameworks, namely Niles Eldredge’s Hierarchy Theory of Evolution (with its extended ontology of evolutionary entities) and the Extended Evolutionary Synthesis (with its proposal of an extended ontology of evolutionary processes), in an attempt to map some epistemic bridges (e.g. compatible views of causation; niche construction) and some conceptual rifts (e.g. extra-genetic inheritance; different perspectives on macroevolution; contrasting standpoints held in the “externalism–internalism” debate) that exist between them. This paper seeks to encourage theoretical, philosophical and historiographical discussions about pluralism or the possible unification of contemporary evolutionary biology
M5-branes from gauge theories on the 5-sphere
We use the 5-sphere partition functions of supersymmetric Yang-Mills theories
to explore the (2,0) superconformal theory on S^5 x S^1. The 5d theories can be
regarded as Scherk-Schwarz reductions of the 6d theory along the circle. In a
special limit, the perturbative partition function takes the form of the
Chern-Simons partition function on S^3. With a simple non-perturbative
completion, it becomes a 6d index which captures the degeneracy of a sector of
BPS states as well as the index version of the vacuum Casimir energy. The
Casimir energy exhibits the N^3 scaling at large N. The large N index for U(N)
gauge group also completely agrees with the supergravity index on AdS_7 x S^4.Comment: 44 pages, 1 figure, v4: ref added, clarified weak/strong coupling
behaviors of large N free energy, minor improvements, version to be published
in JHE
Transformation and tumorigenicity testing of simian cell lines and evaluation of poliovirus replication
The key role of cell cultures in different scientific fields is worldwide recognized, both as in vitro research models alternative to laboratory animals and substrates for biological production. However, many safety concerns rise from the use of animal/human cell lines that may be tumorigenic, leading to potential adverse contaminations in cell-derived biologicals. In order to evaluate the suitability of 13 different cell lines for Poliovirus vaccine production, safety and quality, in vitro/in vivo tumorigenicity and Poliovirus propagation properties were evaluated.
Our results revealed that non-human primate cell lines CYNOM-K1, FRhK-4, 4MBr-5 and 4647 are free of tumorigenic features and represent highly susceptible substrates for attenuated Sabin Poliovirus strains. In particular, FRhK-4 and 4647 cell lines are characterized by a higher in vitro replication, resulting indicated for the use in large-scale production field
Optical Detection of CoV-SARS-2 Viral Proteins to Sub-Picomolar Concentrations
The emergence of a new strain of coronavirus in late 2019, SARS-CoV-2, led to a global pandemic in 2020. This may have been preventable if large scale, rapid diagnosis of active cases had been possible, and this has highlighted the need for more effective and efficient ways of detecting and managing viral infections. In this work, we investigate three different optical techniques for quantifying the binding of recombinant SARS-CoV-2 spike protein to surface-immobilized oligonucleotide aptamers. Biolayer interferometry is a relatively cheap, robust, and rapid method that only requires very small sample volumes. However, its detection limit of 250 nM means that it is not sensitive enough to detect antigen proteins at physiologically relevant levels (sub-pM). Surface plasmon resonance is a more sensitive technique but requires larger sample volumes, takes longer, requires more expensive instrumentation, and only reduces the detection limit to 5 nM. Surface-enhanced Raman spectroscopy is far more sensitive, enabling detection of spike protein to sub-picomolar concentrations. Control experiments performed using scrambled aptamers and using bovine serum albumin as an analyte show that this apta-sensing approach is both sensitive and selective, with no appreciable response observed for any controls. Overall, these proof-of-principle results demonstrate that SERS-based aptasensors hold great promise for development into rapid, point-of-use antigen detection systems, enabling mass testing without any need for reagents or laboratory expertise and equipment.fals
A clinical and molecular characterisation of CRB1-associated maculopathy
To date, over 150 disease-associated variants in CRB1 have been described, resulting in a range of retinal disease phenotypes including Leber congenital amaurosis and retinitis pigmentosa. Despite this, no genotype–phenotype correlations are currently recognised. We performed a retrospective review of electronic patient records to identify patients with macular dystrophy due to bi-allelic variants in CRB1. In total, seven unrelated individuals were identified. The median age at presentation was 21 years, with a median acuity of 0.55 decimalised Snellen units (IQR = 0.43). The follow-up period ranged from 0 to 19 years (median = 2.0 years), with a median final decimalised Snellen acuity of 0.65 (IQR = 0.70). Fundoscopy revealed only a subtly altered foveal reflex, which evolved into a bull’s-eye pattern of outer retinal atrophy. Optical coherence tomography identified structural changes—intraretinal cysts in the early stages of disease, and later outer retinal atrophy. Genetic testing revealed that one rare allele (c.498_506del, p.(Ile167_Gly169del)) was present in all patients, with one patient being homozygous for the variant and six being heterozygous. In trans with this, one variant recurred twice (p.(Cys896Ter)), while the four remaining alleles were each observed once (p.(Pro1381Thr), p.(Ser478ProfsTer24), p.(Cys195Phe) and p.(Arg764Cys)). These findings show that the rare CRB1 variant, c.498_506del, is strongly associated with localised retinal dysfunction. The clinical findings are much milder than those observed with bi-allelic, loss-of-function variants in CRB1, suggesting this in-frame deletion acts as a hypomorphic allele. This is the most prevalent disease-causing CRB1 variant identified in the non-Asian population to date
Varieties of living things: Life at the intersection of lineage and metabolism
publication-status: Publishedtypes: Articl
Tree thinking cannot taken for granted: challenges for teaching phylogenetics
Tree thinking is an integral part of modern evolutionary biology, and a necessary precondition for phylogenetics and comparative analyses. Tree thinking has during the 20th century largely replaced group thinking, developmental thinking and anthropocentricism in biology. Unfortunately, however, this does not imply that tree thinking can be taken for granted. The findings reported here indicate that tree thinking is very much an acquired ability which needs extensive training. I tested a sample of undergraduate and graduate students of biology by means of questionnaires. Not a single student was able to correctly interpret a simple tree drawing. Several other findings demonstrate that tree thinking is virtually absent in students unless they are explicitly taught how to read evolutionary trees. Possible causes and implications of this mental bias are discussed. It seems that biological textbooks can be an important source of confusion for students. While group and developmental thinking have disappeared from most textual representations of evolution, they have survived in the evolutionary tree drawings of many textbooks. It is quite common for students to encounter anthropocentric trees and even trees containing stem groups and paraphyla. While these biases originate from the unconscious philosophical assumptions made by authors, the findings suggest that presenting unbiased evolutionary trees in biological publications is not merely a philosophical virtue but has also clear practical implications
- …
