53 research outputs found

    Experience-based behavioral and chemosensory changes in the generalist insect herbivore Helicoverpa armigera exposed to two deterrent plant chemicals

    Get PDF
    Behavioral and electrophysiological responses of larvae of the polyphagous moth species Helicoverpa armigera to two plant-derived allelochemicals were studied, both in larvae that had been reared on a diet devoid of these compounds and in larvae previously exposed to these compounds. In dual-choice cotton leaf disk and pepper fruit disk arena assays, caterpillars reared on a normal artificial diet were strongly deterred by strychnine and strophanthin-K. However, caterpillars reared on an artificial diet containing strychnine were insensitive to strychnine and strophanthin-K. Similarly, caterpillars reared on an artificial diet containing strophanthin-K were also desensitized to both deterrent chemicals. Electrophysiological tests revealed that the deterrent-sensitive neurons in taste sensilla on the maxillae of caterpillars reared on each deterrent-containing diet displayed reduced sensitivity to the two chemicals compared with the caterpillars reared on normal diets. We conclude that the experience-dependent behavioral plasticity was partly based on the reduced sensitivity of taste receptor neurons and that the desensitization of taste receptor neurons contributed to the cross-habituation to the two chemicals

    Regulation of Apoptotic Pathways by Stylophora pistillata (Anthozoa, Pocilloporidae) to Survive Thermal Stress and Bleaching

    Get PDF
    Elevated seawater temperatures are associated with coral bleaching events and related mortality. Nevertheless, some coral species are able to survive bleaching and recover. The apoptotic responses associated to this ability were studied over 3 years in the coral Stylophora pistillata from the Gulf of Eilat subjected to long term thermal stress. These include caspase activity and the expression profiles of the S. pistillata caspase and Bcl-2 genes (StyCasp and StyBcl-2-like) cloned in this study. In corals exposed to thermal stress (32 or 34°C), caspase activity and the expression levels of the StyBcl-2-like gene increased over time (6–48 h) and declined to basal levels within 72 h of thermal stress. Distinct transcript levels were obtained for the StyCasp gene, with stimulated expression from 6 to 48 h of 34°C thermal stress, coinciding with the onset of bleaching. Increased cell death was detected in situ only between 6 to 48 h of stress and was limited to the gastroderm. The bleached corals survived up to one month at 32°C, and recovered back symbionts when placed at 24°C. These results point to a two-stage response in corals that withstand thermal stress: (i) the onset of apoptosis, accompanied by rapid activation of anti-oxidant/anti-apoptotic mediators that block the progression of apoptosis to other cells and (ii) acclimatization of the coral to the chronic thermal stress alongside the completion of symbiosis breakdown. Accordingly, the coral's ability to rapidly curb apoptosis appears to be the most important trait affecting the coral's thermotolerance and survival

    Ontogeny of juvenile freshwater pearl mussels, Margaritifera margaritifera (Bivalvia: Margaritiferidae).

    Get PDF
    The gills of juvenile freshwater bivalves undergo a complex morphogenesis that may correlate with changes in feeding ecology, but ontogenic studies on juvenile mussels are rare. Scanning electron microscopy was used to examine the ultrastructure and ontogeny of 117 juvenile freshwater pearl mussels (Margaritifera margaritifera) ranging in age from 1–44 months and length from 0.49–8.90 mm. Three stages of gill development are described. In Stage 1 (5–9 inner demibranch filaments), only unreflected inner demibranch filaments were present. In Stage 2 (9–17 inner demibranch filaments), inner demibranch filaments began to reflect when shell length exceeded 1.13 mm, at 13–16 months old. Reflection began in medial filaments and then proceeded anterior and posterior. In Stage 3 (28–94 inner demibranch filaments), outer demibranch filaments began developing at shell length > 3.1 mm and about 34 months of age. The oral groove on the inner demibranch was first observed in 34 month old specimens > 2.66 mm but was never observed on the outer demibranch. Shell length (R2 = 0.99) was a better predictor of developmental stage compared to age (R2 = 0.84). The full suite of gill ciliation was present on filaments in all stages. Interfilamentary distance averaged 31.3 μm and did not change with age (4–44 months) or with size (0.75–8.9 mm). Distance between laterofrontal cirri couplets averaged 1.54 μm and did not change significantly with size or age. Labial palp primordia were present in even the youngest individuals but ciliature became more diverse in more developed individuals. Information presented here is valuable to captive rearing programmes as it provides insight in to when juveniles may be particularly vulnerable to stressors due to specific ontogenic changes. The data are compared with two other recent studies of Margaritifera development.N/

    Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example

    Get PDF
    © The Author(s) 2017 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Most agronomic traits of interest for crop improvement (including seed yield) are highly complex quantitative traits controlled by numerous genetic loci, which brings challenges for comprehensively capturing associated markers/ genes. We propose that multiple trait interactions underlie complex traits such as seed yield, and that considering these component traits and their interactions can dissect individual quantitative trait loci (QTL) effects more effectively and improve yield predictions. Using a segregating rapeseed (Brassica napus) population, we analyzed a large set of trait data generated in 19 independent experiments to investigate correlations between seed yield and other complex traits, and further identified QTL in this population with a SNP-based genetic bin map. A total of 1904 consensus QTL accounting for 22 traits, including 80 QTL directly affecting seed yield, were anchored to the B. napus reference sequence. Through trait association analysis and QTL meta-analysis, we identified a total of 525 indivisible QTL that either directly or indirectly contributed to seed yield, of which 295 QTL were detected across multiple environments. A majority (81.5%) of the 525 QTL were pleiotropic. By considering associations between traits, we identified 25 yield-related QTL previously ignored due to contrasting genetic effects, as well as 31 QTL with minor complementary effects. Implementation of the 525 QTL in genomic prediction models improved seed yield prediction accuracy. Dissecting the genetic and phenotypic interrelationships underlying complex quantitative traits using this method will provide valuable insights for genomics-based crop improvement.Peer reviewedFinal Published versio

    The behaviour of giant clams (Bivalvia: Cardiidae: Tridacninae)

    Get PDF

    Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas

    Get PDF
    Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more “traditional” stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation

    Chickpea

    Get PDF
    The narrow genetic base of cultivated chickpea warrants systematic collection, documentation and evaluation of chickpea germplasm and particularly wild Cicer species for effective and efficient use in chickpea breeding programmes. Limiting factors to crop production, possible solutions and ways to overcome them, importance of wild relatives and barriers to alien gene introgression and strategies to overcome them and traits for base broadening have been discussed. It has been clearly demonstrated that resistance to major biotic and abiotic stresses can be successfully introgressed from the primary gene pool comprising progenitor species. However, many desirable traits including high degree of resistance to multiple stresses that are present in the species belonging to secondary and tertiary gene pools can also be introgressed by using special techniques to overcome pre- and post-fertilization barriers. Besides resistance to various biotic and abiotic stresses, the yield QTLs have also been introgressed from wild Cicer species to cultivated varieties. Status and importance of molecular markers, genome mapping and genomic tools for chickpea improvement are elaborated. Because of major genes for various biotic and abiotic stresses, the transfer of agronomically important traits into elite cultivars has been made easy and practical through marker-assisted selection and marker-assisted backcross. The usefulness of molecular markers such as SSR and SNP for the construction of high-density genetic maps of chickpea and for the identification of genes/QTLs for stress resistance, quality and yield contributing traits has also been discussed

    Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control

    Full text link

    Oilseed rape (Brassica napus) resistance to growth of Leptosphaeria maculans in leaves of young plants contributes to quantitative resistance in stems of adult plants : Resistance to growth of Leptosphaeria maculans in leaves of young plants

    No full text
    © 2019 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Key message: One QTL for resistance against Leptosphaeria maculans growth in leaves of young plants in controlled environments overlapped with one QTL detected in adult plants in field experiments The fungal pathogen Leptosphaeria maculans initially infects leaves of oilseed rape (Brassica napus) in autumn in Europe and then grows systemically from leaf lesions along the leaf petiole to the stem, where it causes damaging phoma stem canker (blackleg) in summer before harvest. Due to the difficulties of investigating resistance to L. maculans growth in leaves and petioles under field conditions, identification of quantitative resistance typically relies on end of season stem canker assessment on adult plants. To investigate whether quantitative resistance can be detected in young plants, we first selected nine representative DH (doubled haploid) lines from an oilseed rape DY (‘Darmor-bzh’ × ‘Yudal’) mapping population segregating for quantitative resistance against L. maculans for controlled environment experiment (CE). We observed a significant correlation between distance grown by L. maculans along the leaf petiole towards the stem (r = 0.91) in CE experiments and the severity of phoma stem canker in field experiments. To further investigate quantitative trait loci (QTL) related to resistance against growth of L. maculans in leaves of young plants in CE experiments, we selected 190 DH lines and compared the QTL detected in CE experiments with QTL related to stem canker severity in stems of adult plants in field experiments. Five QTL for resistance to L. maculans growth along the leaf petiole were detected; collectively they explained 35% of the variance. Two of these were also detected in leaf lesion area assessments and each explained 10-12% of the variance. One QTL on A02 co-localized with a QTL detected in stems of adult plants in field experiments. This suggests that resistance to the growth of L. maculans from leaves along the petioles towards the stems contributes to the quantitative resistance assessed in stems of adult plants in field experiments at the end of the growing season.Peer reviewedFinal Published versio
    corecore