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    Abstract  

  The narrow genetic base of cultivated chickpea warrants systematic collection, 
documentation and evaluation of chickpea germplasm and particularly wild 
 Cicer  species for effective and effi cient use in chickpea breeding programmes. 
Limiting factors to crop production, possible solutions and ways to overcome 
them, importance of wild relatives and barriers to alien gene introgression and 
strategies to overcome them and traits for base broadening have been  discussed. 
It has been clearly demonstrated that resistance to major biotic and abiotic 
stresses can be successfully introgressed from the primary gene pool 
 comprising progenitor species. However, many desirable traits including high 
degree of resistance to multiple stresses that are present in the species 
 belonging to secondary and tertiary gene pools can also be introgressed by 
using special techniques to overcome pre- and post-fertilization barriers. 
Besides resistance to various biotic and abiotic stresses, the yield QTLs have 
also been  introgressed from wild  Cicer  species to cultivated varieties. Status 
and importance of molecular markers, genome mapping and genomic tools 
for chickpea  improvement are elaborated. Because of major    genes for various 
biotic and abiotic stresses, the transfer of agronomically important traits into 
elite  cultivars has been made easy and practical through marker-assisted 
 selection and marker-assisted backcross. The usefulness of molecular markers 
such as SSR and SNP for the construction of high-density genetic maps of 
chickpea and for the identifi cation of genes/QTLs for stress resistance, quality 
and yield contributing traits has also been discussed.  
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3.1         Introduction 

 Chickpea ( Cicer arietinum  L.) is cultivated in 
almost all parts of the world covering Asia, Africa, 
Europe, Australia, North America and South 
America continents. It is known by various com-
mon or local names in different countries like 
 Hamas ,  Hommos ,  Humz ,  Nakhi  and  Melanch  in 
Arabian countries;  Keker  in the Netherlands; 
 Kichererbse  in Germany and Belgium;  Ceseror  and 
 Cicerolle  in France,  Ceci  in Vatican City and 
Switzerland,  Simbra  in Ethiopia;  Lablabi  in Turkey; 
 Garbanzo  or  Garbanzobean  in Spain;  Gravanço     in 
Portugal; and  Ovetichie  in Russia. Similarly, in 
India, chickpea is known by various names like 
 Chana  or  Gram  or  Bengal gram  or  Chani     in 
Haryana, Rajasthan, Uttarakhand, Uttar Pradesh, 
Madhya Pradesh, Chhattisgarh, Bihar, Jharkhand, 
etc.;  Chhole  in Punjab, Jammu and Kashmir and 
Delhi;  Chola  in West Bengal;  Harbara  in 
Maharashtra;  Boot  in Orissa;  Sanagulu  in Andhra 
Pradesh;  Kadale     in Karnataka;  Kadalai  in Tamil 
Nadu; and  Kadala  in Kerala, indicating its wide-
spread cultivation and knowledge of utilization. 

 Chickpea, a member of Fabaceae, is a self- 
pollinated true diploid (2 n  = 2 x  = 16) with genome 
size of 738 Mbp (Varshney et al.  2013a ). It is an 
ancient cool season food legume crop cultivated by 
man and has been found in Middle Eastern archae-
ological sites dated 7500–6800 BC (Zohary and 
Hopf  2000 ). Its cultivation is mainly concentrated 
in semiarid environments (Saxena  1990 ). Chickpea 
is the second most important food legume crop 
after common bean (FAOSTAT  2011 ). It is grown 
in more than 50 countries on an area of 13.2 m ha, 
producing approximately 11.62 m tonnes annually. 
India ranks fi rst in the world’s production and area 
by contributing around 70.7 % to the world’s total 
production (FAOSTAT  2011 ). It is one of the most 
important food legume plants in sustainable 
 agriculture system because of its low production 
cost, wider adaptation, ability to fi x atmospheric 
nitrogen and fi t in various crop rotations (Singh 
 1997 ) and presence of prolifi c tap root system. 
Chickpea can fi x atmospheric nitrogen up to 
140 kg/ha through its symbiotic association with 
 Rhizobium  and meets its 80 % requirement 
(Saraf et al.  1998 ). It also helps in enhancing the 

soil quality for subsequent cereal crop cultivation 
by adding organic matter for the maintenance of 
soil health and ecosystem. Deep and tap root 
 system of chickpea is known to help in opening up 
of the soil to the deeper strata, ensuring better 
 texture and aeration of the soil for next crop. 

 It is a rich source of quality protein (20–22 %) to 
the predominantly vegetarian population in Indian 
subcontinent, other South Asian countries and the 
Middle East. It has the highest nutritional composi-
tions and free from anti-nutritive components com-
pared to any other dry edible grain legumes, and 
thus, it is considered a functional food or nutraceu-
tical. Besides proteins, it is rich in fi bre and miner-
als (phosphorus, calcium, magnesium, iron and 
zinc), and its lipid fraction is high in unsaturated 
fatty acids (Williams and Singh  1987 ). It has no 
anti-nutritional factors (Mallikarjuna et al.  2007 ) 
and contains higher amounts of carotenoids like 
β-carotene than genetically engineered ‘golden 
rice’ (Abbo et al.  2005 ). This plant holds a good 
repute in ‘Ayurvedic’ and ‘Unani’ systems of medi-
cine. In India, acid exudates from the leaves were 
used medicinally for aphrodisiac, bronchitis, chol-
era, constipation, diarrhoea, dysentery, snakebite, 
sunstroke and warts. It also has the property to act 
as hypo-cholesteremic agent; germinating chickpea 
is believed to reduce the blood cholesterol level. 
Sprouted seeds are eaten as a vegetable or salad. 
Young leaves and stems and green pods are eaten 
like vegetables. Leaves yield an indigo-like dye. 
The dried seeds may be used in soups or after grind-
ing as fl our. Grain husks, stems and leaves may be 
used in livestock feed. In the USA and Europe, 
chickpeas are marketed dried, canned or in various 
vegetable mixtures. Mashed chickpea mixed with 
oils and spices (hummus) is a popular hors d’oeuvre 
in the Mediterranean Middle East. Vavilov ( 1926 ) 
supported the idea of Southwest Asia and the 
Mediterranean region being the primary centres of 
origin, with Ethiopia as the secondary centre. van 
der Maesen ( 1987 ) suggested that Anatolia in 
Turkey was the area where chickpea was believed 
to have originated. Two types of chickpea cultivars 
are recognized globally –  kabuli  and  desi . The  kab-
uli  types are generally grown in the Mediterranean 
region including Southern Europe, Western Asia 
and Northern Africa, and the  desi  types are grown 
mainly in Ethiopia and Indian subcontinent.  Desi  
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chickpeas are characterized by fl owers of varying 
colours, angular to round seeds with dark seed coat, 
anthocyanin pigmentation on stem or other plant 
parts, rough seed surface and with erect, semierect 
or semi-spreading growth habit, whereas  kabuli  
types generally have owl- or ram-shaped beige-
coloured seeds, white fl owers, smooth seed  surface, 
lack of anthocyanin pigmentation and semi- 
spreading to erect growth habit (Pundir et al.  1985 ). 
Of the total production, the  desi  and  kabuli  chick-
peas  contribute around 80 % and 20 %, respec-
tively.  Kabuli  type is mainly grown in temperate 
regions, while the  desi  type chickpea is grown 
mostly in the semiarid tropics (Malhotra et al.  1987 ; 
Muehlbauer and Singh  1987 ).  

3.2     Systematics, Genetic 
Relationships and Crop 
Gene Pool 

3.2.1     Systematics 

 The  Cicer  genus belongs to family Leguminosae, 
subfamily Papilionaceae and tribe Cicereae Alef. 
The  Cicer  genus currently comprises 43 species, 
out of which 9 are annual and 34 are perennial 
species (Muehlbauer et al.  1994 ). Most of these 
species are found in West Asia and North Africa, 
covering Turkey in the north to Ethiopia in the 
south and Pakistan in the east to Morocco in the 
west. Of the 9 annual  Cicer  species,  C. arietinum  
is the only cultivated species. The eight other 
annual  Cicer  species are  C. reticulatum ,  C. 
 echinospermum ,   C. pinnatifi dum ,  C. judaicum , 
 C. bijugum ,  C. cuneatum ,  C. chorassanicum  and 
 C. yamashitae . The wild annual progenitor of 
chickpea has been identifi ed as  C. reticulatum  L. 
(Ladizinsky and Adler  1976 ), and the perennial 
progenitor is proposed as  C. anatolicum  (Tayyar 
and Waines  1996 ). The  Cicer  species, including 
cultivated and wild, have been classifi ed into four 
sections based on their geographical distribution, 
life cycle and morphological characteristics (van 
der Maesen  1987 ). The 8 annual species, namely, 
 C. arietinum, C. reticulatum, C. echinospermum, 
C. pinnatifi dum, C. bijugum, C. judaicum, C. 
yamashitae  and  C. cuneatum , were grouped in 
 Monocicer  section,  C. chorassanicum  and  C. 

incisum  (perennial species) in  Chamaecicer  sec-
tion, 23 perennial species in  Polycicer  section 
and the remaining 7 woody perennial species in 
 Acanthocicer  section .  The distribution of differ-
ent  Cicer  species is given in Table  3.1 .

3.2.2        Genetic Relationships 

 The knowledge of genetic relationships between 
the cultivated and its wild relatives is a prerequisite 
to exploit related species for the introgression of 
useful traits from wild to cultivated background, to 
track the evolution of cultivated species and also to 
establish the relatedness among the species within 
the genus. Before making use of wild forms in a 
better way, there is need to understand crossability 
relationships, chemotaxonomic relationships and 
cytogenetical affi nities among the wild species 
and cultigens (Hawkes  1977 ). Interspecifi c hybrid-
ization, seed storage protein profi les, isozymes, 
karyotype and molecular markers have been used 
as criteria to study species relationships in the 
genus  Cicer  (Kaur et al.  2010a ).  

3.2.3     Crop Gene Pool 

 Harlan and de Wet ( 1971 ) proposed the concept of 
gene pools and their uses in crop improvement. 
The genus  Cicer  is classifi ed into three gene pools 
(primary, secondary and tertiary) based on cross-
ability with cultigens. The experimental evidences 
permitted to defi ne the gene pool of chickpea 
(Ladizinsky and Adler  1976 ; Ahmad et al.  1987 ). 
The accumulated evidence of experimental hybrid-
ization to the gene pool approach would save the 
misdirected efforts in attempting wide crosses. 
Various researchers proposed different pools for 
different species. van der Maesen et al. ( 2007 ) pro-
posed recent classifi cation in which primary gene 
pool consists of cultivated species and landraces. 
The secondary gene pool consists of the progeni-
tor species,  C. reticulatum  and  C. echinospermum , 
the species that are crossable with  C. arietinum  but 
with reduced fertility of the resulting hybrids and 
progenies; nevertheless, both are cross- compatible 
with the cultigen and do not need in vitro interven-
tions to produce hybrids. The tertiary gene pool 
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 Species  Distribution 

  C. nuristanicum   Afghanistan, India, 
Pakistan 

  C. oxyodon   Iran, Afghanistan, N 
Iraq 

  C. pungens   Afghanistan, USSR 
      C. spyroceras, C. stapfi anum, 
C. subaphyllum  

 Iran 

  C. tragacanthoides   Iran, USSR 

   Table 3.1    Distribution of different annual and perennial 
 Cicer  species   

 Species  Distribution 

 Annual species 

  C. arietinum   Mediterranean 
region to Burma, 
Ethiopia, Mexico, 
Chile 

  C. chorassanicum   N and C 
Afghanistan, N and 
NE Iran 

  C. bijugum   SE Turkey, N Syria, 
N Iraq 

  C. cuneatum   Ethiopia, SE Egypt, 
NE Sudan, Saudi 
Arabia 

  C. echinospermum   Turkey, E Anatolia, 
N Iraq 

  C. judaicum   Palestine, Lebanon 

  C. pinnatifi dum   Cyprus, N Iraq, 
Syria, Turkey, USSR 

  C. reticulatum   E Turkey 

  C. yamashitae   Afghanistan 

 Perennial species 
  C. acanthophyllum   Afghanistan, 

Pakistan, USSR 

  C. anatolicum   Turkey, Iran, Iraq, 
Armenia 

  C. atlanticum   Morocco 

  C. balcaricum   Caucasus (USSR) 

      C. baldshuanicum, 
C. fl exuosum, C. grande, 
C. incanum, C. korshinskyi, 
C. laetum, C. mogoltavicum, 
C. paucijugum, C. rassuloviae, 
C. songaricum  

 USSR 

  C. canariense   Canary islands, 
Tenerife, La Palma 

  C. fedtschenkoi   USSR, N and NE 
Afghanistan 

   C. fl oribundum, 
C. heterophyllum, C. isauricum  

 Turkey 

  C. graecum   Greece 

  C. incisum   Greece, Turkey, 
Iran, Lebanon, 
USSR 

  C. kermanense   SE Iran 

  C. macrocanthum   Afghanistan, India, 
Pakistan, USSR 

  C. microphyllum   E Afghanistan, 
Tibet, India, 
Pakistan, USSR 

  C. montbretti   Albania, Bulgaria, 
Turkey 

  C. multijugum, C. rechingeri   Afghanistan 

consists of all the annual and perennial  Cicer  spe-
cies that are not crossable with cultivated species. 

 The  Cicer  species possess wealth of useful genes 
for biotic and abiotic stresses and hold promise for 
enhancing seed yield through introgression of wild 
genes into cultivated species (Singh et al.  1982a ,  b , 
 2005 ,  2014 ; Singh and Ocampo  1993 ). Large inter-
accessions as well as intra-accessions variation has 
been observed in different  Cicer  species for resis-
tance to  Botrytis  grey mould (Kaur et al.  2007 ). 
Verma et al. ( 1990 ) studied the crossability of culti-
vated chickpea, used as female, with  C. echinosper-
mum, C. judaicum  and  C. bijugum,  used as males. 
All the F 1 s were fertile and were successfully 
advanced to later generations. All the crosses were 
developed under fi eld conditions using mixture of 
plant growth hormones at the time of emasculation 
and pollinations. The success was attributed to the 
use of growth hormones and large number of polli-
nations and, thus, indicated that there is a need to 
reclassify  Cicer  species. The recent studies (Sandhu 
et al.  2005 ; Kaur et al.  2013 ) indicated that  C. pin-
natifi dum , a valuable source for several biotic and 
abiotic stresses, can be crossed successfully with 
cultivated chickpea for the transfer of high level of 
resistance to  Botrytis  grey mould and  Ascochyta  
blight (Kaur et al.  2013 ). These studies further con-
fi rm fi ndings of Verma et al. ( 1990 ).   

3.3     Assessment of Gene Flow 
for Crop Improvement 

 Due to long evolutionary process, high-yielding 
genes might have been eroded from populations or 
become silent resulting in average grain yield of 
most of the present-day cultivars. It is also true that 
in most of the cases, high-yielding varieties devel-
oped through hybridization in the last 40–50 years 
have utilized limited variability as the derivatives of 
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already utilized plant genetic resources were consid-
ered in making crosses for the improvement of tar-
geted traits. Therefore, the assessment of gene fl ow 
and constraints in fl ow has been discussed below. 

 Due to domestication bottlenecks, the genetic 
base of various legume crops including chickpea 
became narrow (Spillane and Gepts  2001 ). The 
bottleneck is perpetuated further by various 
 reproductive isolation factors preventing gene fl ow. 
The domesticated plants may be carried by the 
 cultivators to sites far removed from its original 
habitat. During transfer between latitudes, there 
may be further narrowing of the genetic base, 
because the population would not be well adapted 
to the new day-length conditions, and so only a 
small number of the genotypes would survive. 
There may be other chance occurrences that narrow 
the genetic base such as disease epidemics, which 
may decimate populations. Post- domestication, the 
crops evolved under human selection but continued 
to possess a breadth of genetic variation in order to 
overcome challenges from changes in biotic and 
abiotic milieu. The advent of modern plant breed-
ing resulted in the creation of plant varieties that 
optimized adaptation at the cost of adaptability. The 
narrowed genetic base of germplasm is often 
 evident from plateau in yield gains as have been 
observed in several other crop plants. Historically, 
instances of more disastrous consequences have 
also been observed. Often quoted instances include 
the  Ascochyta  blight epidemics caused by 
 Ascochyta rabiei  in North India in 1980 and 1982 
(Singh et al.  1982b ,  1984b ). During    the process of 
evolution, chickpea like other crops are subjected to 
genetic bottlenecks and subsequent founder effect 
that resulted in narrow genetic base. The progenitor 
species  C. reticulatum  (Ladizinsky and Adler  1976 ) 
is narrowly distributed in Southeastern Turkey and 
harbours limited adapted variation compared to 
wheat and barley (Berger et al.  2003 ). During 
domestication, it is likely that only a small  proportion 
of diversity of wild population is sampled. 
Subsequent gene fl ow between new cultivars and its 
wild progenitors might be restricted by breeding 
barriers and nature of domestication event (Cooper 
et al.  2001 ).    Shifting from autumn to spring season 
probably to avoid  Ascochyta  blight has reduced the 
genetic diversity and selection to suit post-rainy sea-
son cropping has further narrowed the genetic base. 

The replacement of landraces by elite cultivars 
developed through hybridization using closely 
related parents caused another  bottleneck. With 
changing climatic conditions and evolution of new 
pathogens, selection will be  rigorous for chickpea 
germplasm to withhold biotic and abiotic stresses, 
which will further narrow down the genetic base. 
The pedigree analysis of 86 chickpea varieties 
released in India through  hybridization and selec-
tion revealed that top ten ancestors contributed 
more than 35 % to their genetic base and about 
41 % varieties have ‘Pb7’ as one of the ancestors in 
their pedigree (Kumar et al.  2004 ,  2008 ,  2009 ). 
Because of the    limited genetic variability within the 
primary gene pool, the genetic improvement of 
chickpea by classical breeding involving inter-
varietal crosses has met with limited success 
(Singh and Ocampo  1993 ). Thus, the  situation 
warrants an urgent need to broaden the genetic base 
of cultivated varieties through genetic enhancement 
by involving unadapted germplasm, exotic germ-
plasm and landraces in hybridization (Duvick  1995 ). 
Since the genetic variability within the primary gene 
pool is limited, there is a need for introgression 
of alien genes through pre-breeding efforts for 
widening the base of cultivated gene pool (Verma 
et al.  1990 ; van Rheenen et al.  1993 ; Nadarajan and 
Chaturvedi  2010 ).  

3.4     Level of Diversity in Crop 
Germplasm 

 The sum total of hereditary materials present in a 
crop species and its wild relatives is referred to 
as germplasm. This is also known as genetic 
resources or gene pool. In other words, germ-
plasm is a collection of genetic resources for an 
organism which include inbred lines, landraces, 
open pollinated varieties, exotic accessions, wild 
species, cultivars and breeding stocks. These 
types of germplasm can carry unidentifi ed varia-
tion that may be a valuable resource for breeders 
and other researchers. Germplasm can be collected 
from centres of diversity, gene banks, gene sanctu-
aries, farmer’s fi eld, markets and seed companies. 
Genetic pool represents the entire genetic variabil-
ity or diversity within a crop species. Agricultural 
practices have gradually dispersed the local tradi-
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tional varieties and crop wild relatives (CWRs) 
leading to a loss of indigenous diversity. However, 
CWR and landraces (LR) are the two major com-
ponents of agro- biodiversity that offer the widest 
range of diversity for breeders in crop improvement 
programmes. The CWRs and locally adapted tradi-
tional crop varieties contain vital sources of useful 
genes. These invaluable resources are threatened 
by the climate change as well as by a range of other 
human-induced pressures and socio-economic 
changes, while the value of CWR and LR for food 
security is widely recognized. A systematic strat-
egy for the conservation of the highest priority 
CWR and LR resources is required at global level. 

3.4.1     Crop Wild Relatives 

 The crop wild relatives (CWRs) provide the 
broadest range of genetic diversity in grain 
legumes, including chickpea, and have the ability 
to provide the wide range of germplasm resources 
for the incorporation of various traits of agro- 
economic importance (Singh et al.  2013 ). Many 
species are being extinct because natural habitats 
are being lost due to increased human pressure 
and ecological threats. There is an urgent need for 
systematic exploration and sample of the genetic 
diversity in wild relatives that was partially cap-
tured during the domestication. The  ex situ  conser-
vation was pioneered by Vavilov ( 1926 ), and 
subsequent explorations resulted in large collec-
tions in gene banks. However, these gene banks 
are dominated by cultivated forms of crops. Crop 
wild relatives are also important from phyloge-
netic perspective, applied in interspecifi c crosses to 
increase the diversity, as the majority of allelic vari-
ation is predicted to occur outside of the crop itself. 
In spite of the existence of vast collections of CWR, 
their use for crop improvement has been limited as 
assessing the genetic diversity was a challenge until 
now in most of the legumes including chickpea. 
Selections for higher yield and quality characteris-
tics during domestication have resulted in narrow-
ing of the genetic variation in cultivated chickpea. 
The wild  Cicer  species do not consist of useful 
variation for morphological characteristics and 
protein content, but they are rich sources of resis-

tance to various biotic and abiotic stresses (Singh 
et al.  1998 ; Croser et al.  2003 ; Sandhu et al.  2006 ; 
Mallikarjuna et al.  2007 ; Kaur et al.  2013 ), yield 
QTLs (Singh and Ocampo  1997 ; Singh et al.  2005 ) 
and biochemical traits (Kaur et al.  2010b ).  

3.4.2     Landraces 

 A variable population, which is identifi able and 
usually has a local name, is designated as land-
race. It lacks ‘formal’ crop improvement and 
characterized by a specifi c adaptation to the envi-
ronmental conditions of the area of cultivation 
and is associated with the traditional uses, knowl-
edge, habits, dialects and celebrations of the peo-
ple who developed and continue to grow it 
(Lorenzetti and Negri  2009 ). The LR belongs to 
the people who developed it and feel to be its 
owner (in a specifi c human context). They are 
maintained because of their better quality than 
commercial varieties and better yield perfor-
mance/persistence under diffi cult pedo-climatic 
conditions. It is estimated that less than one third 
of them is already marketed as niche, typical 
product (Negri  2003 ). However, most of them are 
highly threatened because they are cultivated pri-
marily by ageing farmers (Negri  2003 ; Galluzzi 
et al.  2010 ). The lack of traditional information 
severely hampers the possibility of conserving 
and using these LR effectively. There is an urgent 
need to make an inventory and focus should be 
given to the priority species .  Landraces as an 
agro-biodiversity resource is not only critical for 
future food security but is a vital component of 
our biodiversity and cultural heritage. The extent 
of loss of crop genetic diversity is associated with 
the loss of landraces which is very diffi cult to 
quantify accurately. This erosion of our agro- 
biodiversity resources is likely to be critical for 
future food security. It has been recognized in a 
number of international legal platforms, including 
the Convention on Biological Diversity and the 
International Treaty on Plant Genetic Resources 
for Food and Agriculture. In general, it has been 
noticed that the average landrace maintainer was 
found to be 65 years old and there was little evi-
dence of the next generation being willing or able 
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to continue the family role as maintainers. Hence 
the need for research in this area and the produc-
tion of a corresponding inventory is necessary. 
Any new variation will not replace the old variet-
ies that have been lost. Rich diversity in the form 
of landraces of chickpea has been reported in 
Bundelkhand and part of Chhattisgarh in India.  

3.4.3     Commercial Cultivars 

 In the 1970s, most of the commercial varieties 
were developed through selection from landraces. 
The major emphasis was given on increasing yield 
potential. During the 1980s, the focus was laid on 
breeding for disease resistance. Consequently, sev-
eral varieties (Avarodhi, JG 315, Pusa 209, GNG 
16, Pusa 212, Pusa 240, Pusa 244, Pusa 256, Pusa 
413, ICCV 10, ICCV 37, Phule G 5, Phule G 12, 
etc.) resistant/tolerant to  Fusarium  wilt were 
developed and released for their cultivation in dif-
ferent regions of the country (Chaturvedi et al. 
 2003 ). Similarly, genotypes tolerant to  Ascochyta  
blight, namely, C235, Gaurav, H 75-35, BG 261, 
PBG 1, GNG 146 and PBG 5, were developed for 
North West Plain Zone (Delhi, Punjab, Haryana, 
North Western Rajasthan and Western UP) and G 
543 and PBG 5 for the state of Punjab (Sandhu 
et al.  2004 ). However, during the 1990s, the major 
thrust was given on breeding for multiple disease 
resistance and high-input responsive varieties. 
Sources for drought tolerance (RSG 44, RSG 963, 
RSG 888, ICC 4958, ICCV 10, Vijay, GL 769, 
GPF 2, PDG 3, PDG 4, Phule G 5), cold tolerance 
(ICCV 88506, ICCV 88503, Phule G 96006, ICC 
8923, PDG 84-10, GL 28008, GL 28028) and salt 
tolerance (CSG 88101, CSG8962) were identifi ed 
for their use in breeding programme. As a result, 
multiple disease-resistant varieties, namely, 
Bharati   , Pusa 372, Pusa 362, BG 391, KWR 108 
and GNG 1581 against wilt and root rot and GNG 
469 against  Ascochyta  blight and root rot, and 
high-input responsive variety like DCP 92-3 were 
released for cultivation. Rice fallows (about 
11.0 m ha) in Eastern India (eastern UP, Bihar, 
West Bengal, Orissa, Jharkhand and Assam) and 
Central India (eastern MP and Chhattisgarh) 
 provide opportunities for horizontal expansion of 

area under chickpea. This requires the develop-
ment of varieties amenable for late planting to 
popularize rice-chickpea sequential cropping sys-
tem. As a result of concerted breeding efforts, vari-
eties like KPG 59, Pant G 186, BGM 547, RSG 
963, Rajas and Pusa 372 were developed for late 
sown condition in Eastern India. Similarly, 
recently developed varieties like JG 14, Vaibhav, 
JSC 55 and JSC 56 have great potential for adapta-
tion in late sown condition and rice fallow of 
Central India due to short duration, drought and 
heat tolerance traits. 

 The development of short-duration varieties 
like ICCV 2, JG 74, Vijay, JG 11, JG 16, JAKI 
9218 and KAK 2 was the major catalyst for the 
expansion of chickpea area in Southern and 
Central India. In spite of reduction in duration, 
the yield potential of these early maturing variet-
ies remains almost unaffected, thus improving 
per day the productivity of the crop. Presently 
emphasis has been laid on the development of 
extra-large seeded  kabuli  chickpea varieties 
(>50 g/100 seed weight). Some of the promising 
varieties, viz. Phule G 0517, IPCK 02, MNK 1 
and PKV Kabuli 4-1, have been released for 
Maharashtra, Madhya Pradesh, Andhra Pradesh 
and Karnataka, and a medium bold seeded vari-
ety L 552 has been released for Punjab state. A 
major breakthrough has been witnessed in devel-
oping large seeded  kabuli  varieties with high- 
yield potential such as KAK 2, BG 1003, BG 
1053, JGK 1, Phule G 95311, IPCK 2002-29, 
IPCK 2004-29, L 555 and HK 05-169 (Chaturvedi 
et al.  2010 ). Similarly, prominent large seeded 
 desi  varieties, viz. BG 256, Phule G 5, BGM 391, 
K 850, Radhey, Gujarat Gram 2 and L 556, were 
also developed.   

3.5     Production-Related 
Problems 

3.5.1      Fusarium  Wilt 

 Chickpea wilt occurs in 32 countries across 6 
continents in the world (Nene et al.  1991 ; Singh 
and Sharma  2002 ). It is caused by     Fusarium 
 oxysporum  f. sp.  ciceris.  The yield losses caused 
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by it vary from 10 to 90 % (Jimenez-Diaz et al. 
 1989 ; Singh and Reddy  1991 ). At present there 
are eight distinct physiological races of  Fusarium 
oxysporum , viz. 0, 1A, 1B/C, 2, 3, 4, 5 and 6, out 
of which four races that have been identifi ed as 1, 
2, 3 and 4 are prevalent in India (Haware and 
Nene  1982 ) and races 0, 5 and 6 are reported 
from Spain (Jimenez-Diaz et al.  1989 ). Breeding 
for  Fusarium  wilt is of prime importance because 
of the nature of the pathogen – it can persist in 
soil year after year even in the absence of the host 
(Haware et al.  1996 ). Due to the presence of such 
a number of races, it is very diffi cult to develop a 
cultivar which shows stability to the disease 
across different regions. Most of the resistance 
against  Fusarium  wilt is of vertical type (Sharma 
et al.  2005 ) as is mostly governed by a single 
major gene. Chickpea genotypes differ in the 
development of initial symptoms of wilt, indicat-
ing different degrees of resistance which is con-
trolled by the segregation of a single gene 
(Upadhyaya et al.  1983 ). Such individual genes 
which are part of oligogenic resistance mecha-
nism delay the onset of disease symptoms, and 
such a phenomenon is called as late wilting. The 
yield losses are signifi cantly less in the case of 
genotypes which show the phenomenon of late 
wilting due to the combination of two recessive 
genes for resistance. Resistance to race 0 is due to 
two independent genes (Rubio et al.  2003 ), while 
resistance is digenic or trigenic for race 1A, 2 and 
4. Resistance to race 3 and 5 is controlled by a 
single gene (Sharma et al.  2005 ). Singh    et al. 
( 2012a ) have also reported resistance against 
 Fusarium  wilt in the indigenous chickpea 
germplasm.  

3.5.2      Ascochyta  Blight 

  Ascochyta  blight is the most important foliar dis-
ease of chickpea in many parts of the world 
including India. It is caused by  Ascochyta rabiei  
and has a devastating effect on the chickpea pro-
duction by causing yield losses ranging from 10 
to 100 % (Nene and Reddy  1987 ; Singh  1990 ). It 
is reported in 37 countries all over the world. 
Among the most affected regions are the Indian 

subcontinent and Mediterranean region as their 
prevailing climatic conditions are conducive for 
the pathogens.  Ascochyta  disease epidemics are 
common and had occurred in India, Pakistan, the 
USA, Northwest Pacifi c, Australia and Syria in 
the past (Malhotra et al.  2003 ).  Ascochyta rabiei  
isolates have been classifi ed into either a two- or 
three-pathotype system (I, II and III) according to 
their levels of virulence (Udupa et al.  1998 ; Chen 
et al.  2004 ; Jayakumar et al.  2005 ). The main rea-
son for the epidemics is the nature of pathogen 
which is unstable and continuously evolves new 
races which break down the host resistance and, 
thus, reduces the life of cultivars under produc-
tion systems. The development of more virulent 
pathotypes has been reported in Syria (Reddy 
and Kabbabeh  1985 ), Italy (Stamigna et al.  2000 ) 
and Pakistan (Jamil et al.  2000 ). The genetics of 
resistance to  Ascochyta  blight is mainly digenic 
in nature, and both recessive and dominant 
genes are involved in its control (Bhardwaj et al. 
 2010 ). This has forced the breeders to devise a 
different approach for breeding cultivars with 
durable resistance. Under new breeding strat-
egy, plant breeders have shifted to gene pyra-
miding in elite lines instead of incorporating 
vertical resistance. An alternative strategy    of 
deploying different lines possessing resistance 
against different races of the pathogen prevalent 
in different regions can also be effective for 
minimizing yield losses.  

3.5.3      Botrytis  Grey Mould 

  Botrytis  grey mould (BGM) is a second major 
foliar disease of chickpea and is prevalent in 15 
countries including India, Bangladesh, Nepal, 
Pakistan, Australia, Argentina, Myanmar, Canada, 
Columbia, Hungary, Mexico, Spain, Turkey, the 
USA and Vietnam. Earlier there was no reliable 
source of resistance to BGM in India (Singh and 
Reddy  1991 ), but in recent years, derivative lines 
from the interspecifi c crosses of  C. arietinum  and 
 C. pinnatifi dum  had shown high level of genetic 
resistance to the BGM (Kaur et al.  2013 ). This 
resistance can be incorporated into elite lines to 
develop high-yielding chickpea cultivars with 
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durable resistance. According to Mallikarjuna 
(unpublished results), the resistance introgressed 
from wild  C. echinospermum  to cultivated chick-
pea was found to be monogenic in nature, indi-
cating that resistance to BGM can be easily 
incorporated to elite lines from the interspecifi c 
derivatives.  

3.5.4     Pod Borer 

 Among the various insects that attack chickpea 
crop, pod borer ( Helicoverpa armigera)  is the 
most damaging insect. It is quite prevalent in 
Asia, Africa, Australia and some other chickpea- 
growing regions.    As pod borer is a polyphagous 
insect that attacks on more than 182 plant spe-
cies, the development of cultivars resistant or tol-
erant to  H. armigera  could be integrated in the 
pest management strategy particularly in the 
developing countries (Fitt  1989 ; Sharma and 
Ortiz  2002 ). More than 14,000 chickpea germ-
plasm accessions were screened under fi eld con-
ditions at ICRISAT for resistance towards  H. 
armigera  (Lateef and Sachan  1990 ). This resulted 
in the identifi cation and release of moderately 
resistant/tolerant chickpea cultivars (Gowda et al. 
 1983 ; Lateef  1985 ; Lateef and Pimbert  1990 ). 
Still a complete resistance against pod borer is far 
from reach as different chickpea cultivars show 
differential inhibition activity of gut proteinases 
of  H. armigera , which indicate that  H. armigera  
is adapted to a wide range of host protein inhibi-
tors    (Singh et al.  2008 ).  

3.5.5     Bruchids 

 Apart from fi eld, chickpea is also damaged in 
the storage and one such insect is bruchids 
( Callosobruchus chinensis ). It causes loss of 
grains in the Mediterranean region and in India, 
where infestation levels approach 13 % 
(Mookherjee et al.  1970 ; Dias and Yadav  1988 ) 
to total loss (Weigand and Tahhan  1990 ). Till 
now there is no report of resistance in the culti-
vated chickpea, though wild chickpea acces-
sions have shown some resistance to bruchids 

(Singh et al.  1994 ,  1998 ). Owing to crossing 
barrier, it has not been possible to transfer this 
trait to the cultivated background. Thus, chemi-
cal methods are advised for the control of bru-
chids (Duke  1981 ).  

3.5.6     Cold Tolerance 

 If temperature ranges between 0 and 12 °C, then 
this stress can be defi ned as chilling without snow 
cover (Wery et al.  1993 ). If below 10 °C, the sus-
ceptibility of reproductive phase of chickpea to 
chilling temperatures increases (Sandhu et al. 
 2005 ; Srinivasan et al.  1999 ; Nayyar et al.  2005b ). 
When crop is sown in autumn or in early spring, it 
is exposed to freezing stress during vegetative 
growth in WANA region, Europe and Central Asia 
(Singh et al.  1994 ). Usually chickpea grown in 
winter season is more productive than the tradi-
tionally grown spring season in the Mediterranean 
region (Singh and Hawtin  1979 ). This is due to 
long growing season and better moisture avail-
ability. Problem encountered by winter season 
crop is fl ower drop and pod abortion, which leads 
to major yield loss, when mean temperature of the 
day falls below 15 °C (Savithri et al.  1980 ; 
Srinivasan et al.  1999 ; Clarke and Siddique  2004 ; 
Nayyar et al.  2005a ). Chaturvedi et al. ( 2009 ) 
reviewed the work on cold tolerance in chickpea 
extensively and highlighted the importance of 
cold tolerance at reproductive stage in chickpea. 
The deployment of genes for cold tolerance will 
protect crop from getting damaged and reduce 
yield losses. Cold tolerance was found to be con-
trolled by at least fi ve genes with both additive 
and nonadditive gene effects and was dominant 
over susceptibility (Malhotra and Singh  1990 , 
 1991 ). Selfi ng generations would result in reduced 
dominance and epistatic effects, which would be 
better for the selection of cold tolerance in chick-
pea. However, Bhardwaj and Sandhu ( 2009 ) 
reported that cold tolerance is under the control of 
a single recessive gene. Screening of wild  Cicer  
species showed promising traits for cold tolerance 
(Berger et al.  2012 ), but till now there are no 
reports of introgression of cold tolerance from 
wild to the cultivated chickpea.  
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3.5.7     Drought Tolerance 

 Drought is the second most important abiotic stress 
that contributes immensely to the losses in chick-
pea production globally. Most of the time, it is ter-
minal drought that has an adverse effect on the crop 
productivity (Khanna-Chopra and Sinha  1987 ). In 
order to counter this drought stress, development of 
early maturing cultivars will make judicious use of 
the available soil moisture effi ciently and produce 
relatively higher yields. Critical review made by 
Upadhyaya et al. ( 2012 ) illustrates effi cient meth-
ods for phenotyping with respect to drought in 
chickpea and pigeon pea. Drought tolerance may 
be under polygenic or oligogenic control with addi-
tive and nonadditive gene effects. Root traits have 
been given most importance in recent years because 
lines with longer root systems have shown better 
drought tolerance. As chickpea is grown under 
receding moisture conditions, the long root trait 
plays an important role in countering drought. 
Apart from this, early fl owering is considered to be 
very important for drought escape. There a single 
recessive locus involved in controlling early fl ow-
ering (Kumar and van Rheenen  2000 ). Genotypes 
with recessive allele in homozygous condition 
escape drought and give a good yield, and such 
alleles could be easily transferred to the drought-
susceptible lines using suitable breeding method 
for developing drought-tolerant cultivars. Apart 
from this, wild  Cicer  species have been screened, 
and few accessions of  C. pinnatifi dum  and  C. retic-
ulatum  were found to be resistant against drought 
(Toker et al.  2007 ). In the case of cultivated chick-
pea, the line ICC 4958 is currently considered as 
potential donor for drought tolerance. Some chick-
pea cultivars with improved drought tolerance have 
been released using ICC 4958 as one of the donors 
in South India and Kenya (Gaur et al.  2012a ).  

3.5.8     Heat Tolerance 

 Most of the time, heat stress occurs in combina-
tion with/overlapping with drought stress (Toker 
and Canci  2009 ). It is very diffi cult to make dis-
tinction between whether the crop is under heat 
or drought stress; thus, less progress has been 
made on heat tolerance (Malhotra and Saxena 

 1993 ). Chickpea is grown in post-rainy period in 
South Asia, which results in the exposure of crop 
to drought along with high temperature. It is pre-
dicted that climate change would result in tem-
perature rise by 3–4 °C over current levels by 
2050 (Basu et al.  2009 ). Chickpea is usually 
grown in winter season in Northern India. But it 
experiences a high temperature (>35 °C) during 
the reproductive phase. Most sensitive organs of 
plant to heat are fl owers (Wery et al.  1993 ; Toker 
and Canci  2006 ). During the fl owering or repro-
ductive period, if temperature rises above the 
threshold level, it would adversely affect the pod 
formation and seed set and, thus, results in 
reduced grain yield (Summerfi eld et al.  1984 ; 
Wang et al.  2006 ; Basu et al.  2009 ; Kumar et al. 
 2013 ). Adverse effects of high temperature occur 
in seed germination, respiration, membrane sta-
bility, photosynthesis, hormone level, nutrient 
absorption, protoplasmic movement, quality of 
seeds, fruit maturation, fertilization, materials 
transport, withering, burning of lower leaves, 
desiccation of poorly developed plants, stunting 
fl ower and pod abortion, reduced root nodula-
tion, nitrogen fi xation and seed yield (Saxena 
et al.  1988 ; Kurdali  1996 ; Chen et al.  1982 ; 
Wahid and Close  2007 ). In comparison to other 
cool season legume crops, chickpea is more tol-
erant to heat stress (Summerfi eld et al.  1984 ; 
Erskine et al.  1994 ; McDonald and Paulsen  1997 ; 
Patrick and Stoddard  2010 ). However, acute heat 
stress in chickpea could lead to high-yield losses 
and crop failure (Devasirvatham et al.  2012 ). 
Large genetic variations have been observed for 
heat tolerance in chickpea when reference set 
was screened against heat stress at several loca-
tions in India (Krishnamurthy et al.  2010 ). A fi eld 
screening technique for heat tolerance has been 
developed and several sources of heat tolerance 
were identifi ed (Gaur et al.  2014a ).   

3.6     Traits of Importance for Base 
Broadening 

 All studies on assessing genetic diversity in 
chickpea using molecular markers indicate that 
chickpea has a narrow genetic base. A large 
variability is seen in chickpea germplasm for 
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 morphological traits, but it could be a refl ection 
in expression of a limited number of mutant 
genes, as a single mutant gene may cause marked 
changes in the appearance of the plant (Gaur and 
Gour  2003 ). The narrow genetic base of chickpea 
is a major concern for plant breeding programmes 
as the genetic variability is a key factor that con-
tributes to genetic gain from selections. Thus, 
broadening the genetic base of chickpea is very 
much needed for improving effectiveness of 
breeding efforts. The genetic variability in the 
cultivated chickpea can be enhanced by gene 
introgression from the wild species and by induc-
ing genetic changes through induced mutagene-
sis. The wild species of chickpea constitutes a 
valuable genetic resource, particularly for resis-
tance to biotic and abiotic stresses and the nutri-
tional quality traits. Sources of resistance are 
available in the cultivated species for several 
biotic ( Fusarium  wilt,  Ascochyta  blight) and abi-
otic (drought, heat) stresses (reviewed by Gaur 
et al.  2010 ). There is a need to diversify sources 
of resistance being used in the breeding pro-
grammes by bringing new sources of resistance 
from the wild species. There are several biotic 
stresses, such as dry root rot,  Botrytis  grey mould, 
phytophthora blight and pod borer, for which 
high levels of resistance are not available in the 
germplasm of cultivated species and can be intro-
gressed from the wild species or induced through 
mutagenesis. Over a dozen mutants have been 
directly released as varieties (Gaur et al.  2007 ), 
while many others have been used as parents in 
crossing programmes. Mutants with novel traits, 
such as cymose infl orescence with more than 
three fl owers per node (Gaur and Gour  2002 ), 
brachytic growth habit (Gaur et al.  2008 ) and 
determinate growth habit (Hegde  2011 ), have 
been identifi ed in chickpea and have potential for 
developing new plant types in chickpea. Singh 
et al. ( 2014 ) have also identifi ed several useful 
agro-morphological traits and important biotic 
parameters in various wild annual  Cicer  species 
and suggested their introgressions for widening 
the genetic base of cultivated gene pool. 

 In present day, when farm labourers are 
becoming expansive day by day, the farmers are 
demanding chickpea varieties with traits such as 
suitability to mechanical harvesting and toler-

ance to herbicides to enhance mechanization of 
chickpea cultivation (Sandhu et al.  2010 ; Gaur 
et al.  2012a ). Large genetic variations have been 
observed for postemergence herbicide tolerance 
in chickpea (Gaur et al.  2013a ) which can be uti-
lized for the development of herbicide-tolerant 
cultivars. Several diseases, such as dry root rot, 
collar rot, wet root rot and stem rot, were minor 
hitherto and are becoming potential threat to 
chickpea cultivation in many parts of the world 
including India. There is a need to strengthen 
research efforts on identifying useful sources of 
resistance and breeding for enhancing resistance 
to these diseases. The other traits which have not 
received much attention in the past, but are impor-
tant under current scenario of growing environ-
ments and consumer requirements, include 
nutrient use effi ciency, especially phosphorus, 
and nutritional quality traits (protein, iron, zinc, 
β-carotene, oligosaccharides, etc.).  

3.7     Interspecifi c Hybridization 
in Crop Species 

 The crop wild relatives are species closely related 
to crops, including crop progenitors, identifi ed as 
critical resources that are vital for wealth cre-
ation, food security and environmental stability 
(Meilleur and Hodgkin  2004 ; Stolton et al.  2006 ; 
Maxted et al.  2008 ).    Historically, the commercial 
use of wild relatives started in the late nineteenth 
century (Prescott-Allen and Prescott-Allen 
 1988 ), and in the middle of twentieth century, the 
value of CWR was widely recognized and breed-
ing efforts to explore the potential of wild rela-
tives were initiated in many crop species. The use 
of wild relatives increased in the 1970s and 1980s 
(Hodgkin and Hajjar  2008 ) and in the mid-1980s. 
Prescott-Allen and Prescott-Allen ( 1988 ) asserted 
that the achievements were substantial enough to 
recognize the potential of wild relatives. 

 The proportion of wild or weedy relatives in 
gene bank holdings has signifi cantly increased in 
a span of 21    years starting from 1983 (Plucknett 
et al.  1987 ) to 2004 (  http://singer.grinfo.net/    ). 
Summarizing the use of wild relatives for the 
improvement of major crop species in the last 20 
years, Hajjar and Hodgkin ( 2007 ) have listed the 
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number of traits. They showed that the extent of 
utilization varies from crop to crop. Tomato takes 
lead with 55 traits followed by rice and potato 
with 12 traits each. Using CWR, wheat was 
improved for nine traits and sunfl ower for seven 
traits. Millet was featured on the list with three 
traits and maize and chickpea with two traits each. 

 Wild species have contributed substantially to 
crop improvement for many characters including 
seed yield in different crop plants (Stalker  1980 ). 
Similarly in chickpea, the productivity genes/
alleles have been introgressed from  C. echino-
spermum ,  C. reticulatum  (Singh and Ocampo 
 1997 ; Singh et al.  2005 ) and  C. pinnatifi dum  
(Sandhu et al.  2006 ; Singh et al.  2012a ,  b ,  c ). 
However, the transfer of specifi c genes is fre-
quently associated with the transfer of large alien 
chromosome segments having undesirable traits 
(Tanksley and Nelson  1996 ). Owing to linkage 
drag, the genes for primitive or wild traits are 
often introduced along with desirable traits. 
Breaking linkages with unwanted type and restor-
ing the genotype associated with accepted agro-
nomic background may take a long time. The 
fi rst report on interspecifi c crosses involving  C. 
arietinum  on one hand and  C. reticulatum  and  C. 
cuneatum  on the other hand was published by 
Ladizinsky and Adler ( 1976 ). The cross between 
 C. arietinum  and  C. reticulatum  was achieved 
successfully. Subsequently, wide hybridization 
was attempted between  C. arietinum  and  C. echi-
nospermum  by various workers (Pundir and 
Mengesha  1995 ; Singh and Ocampo  1993 ). van 
Dorrestein et al. ( 1998 ) attempted crosses involv-
ing  C. arietinum, C. bijugum  and  C. judaicum . 
Due to the use of in vitro technique, success has 
been made in achieving hybrids between  C. ari-
etinum  and  C. bijugum  and  C. arietinum  and  C. 
judaicum . Badami et al. ( 1997 ) also reported suc-
cessful hybridization between  C. arietinum  and 
 C. pinnatifi dum  using embryo rescue technique. 
No success has been reported in hybridization 
between  C. arietinum  and  C. microphyllum . The 
crossability and further generation advance stud-
ies showed that the species like  C. pinnatifi dum 
and C. judaicum  can be crossed with cultivated 
chickpea (Verma et al.  1990 ,  1995 ; Sandhu et al. 
 2006 ,  2007 ). The derived populations showed 

wide variation for different agro-morphological 
traits. Further, F 5  population of an interspecifi c 
cross with  C. pinnatifi dum  showed that some of 
the derived lines were superior in yield perfor-
mance than the recommended check variety and 
some of the lines also showed resistance against 
 Botrytis  grey mould.  

3.8     Barriers to Interspecifi c 
Hybridization 

 Cross-incompatibility, inviability of F1 hybrid 
and its progenies are the most common barriers 
to wide hybridization. Cross-incompatibility 
between parent species arises when pollen grain 
does not germinate or pollen tube does not reach 
to the ovary or male gamete does not fuse with 
female gamete (Chowdhury and Chowdhury 
 1978 ). Post-fertilization barriers in legumes such 
as production of shrivelled hybrid seed with 
reduced germination (hybrid inviability), produc-
tion of dwarf and weak F 1  plants (hybrid weak-
ness) and death of F 1  plants at critical stage of 
development (hybrid lethality) have been observed 
by various workers in  Cicer  (Ahmad et al.  1988 ). 
This may be attributed to disharmonies between 
genomes of parental species between genome(s) 
of one species and cytoplasm of other, or between 
genotype of F 1  zygote and the genotype of mater-
nal tissues. These barriers were found in varying 
degrees in most of the interspecifi c crosses 
(Al-Yasiri and Coyne  1966 ; Biswas and Dana 
 1976 ; Chowdhury and Chowdhury  1977 ; Machado 
et al.  1982 ; Chen et al.  1983 ; Gopinathan et al. 
 1986 ). Reciprocal crosses should be attempted, if 
there is disharmony between genome of one spe-
cies and cytoplasm of the other. The application of 
fl ower and fruit setting hormones to pollinated 
buds (GA 3 , indole-3-acetic acid, 6-benzyl amino 
purine, etc.) and pre-pollination foliar spray of 
x- aminocaproic acid (immunosuppressant) were 
also found useful in overcoming inviability of 
wide crosses. With the advent of in vitro tech-
niques, viz. embryo rescue and ovule culture, 
ambit of crossable species is greatly enhanced 
(van Rheenen  1992 ). In many instances, the 
hybrid zygote from wide cross died after few 

S. Singh et al.



63

days. Growth regulators in such cases increase 
the embryo survival. These embryos further res-
cued by culturing them on artifi cial medium. 
Murashige ( 1977 ) and Raghvan ( 1980 ) have pre-
sented a good discussion on embryo culture for 
crop breeding. The procedure of embryo culture 
has been detailed by Hadley and Opeshaw ( 1980 ). 
This technique has facilitated the production of 
many viable hybrids in different legume crops 
(Ahn and Hartmann  1978 ; Cohen et al.  1984 ; 
Chen et al.  1990 ; Sharma and Satija  1996 ; 
Gomathinayagam et al.  1998 ). 

 Hybrid sterility generally arises when chro-
mosomes do not pair in F 1 , and therefore, gam-
etes receive different number of chromosomes 
leading to sterility. Studies have shown that in 
some of the interspecifi c hybrids, sterility was of 
segregational type (as per Stebbins  1966  classifi -
cation) and was mainly due to interchange, inver-
sion and possible duplication and defi ciency type 
of structural heterozygosities in the F 1  individu-
als (Biswas and Dana  1976 ; Karmarkar and Dana 
 1987 ). Chromosome doubling of the parental 
species before crossing sometimes increases the 
chances of obtaining a viable hybrid. Colchicine- 
induced allopolyploids were raised from most of 
the semi-fertile and completely seed sterile F 1  
hybrids that had high pollen fertility and seed set 
(Pande et al.  1990 ). Some of the allopolyploids 
have been used as bridge species in wide crosses.  

3.9     Molecular Markers, Genome 
Mapping and Genomics 
as an Adjunct to Breeding 

3.9.1     Molecular Markers 

 Molecular markers which are abundant and have 
high level of polymorphism and can be subjected 
to high-throughput analysis are desired for appli-
cations in genomic studies and crop improvement 
(Sharma et al.  1995 ). Isozymes were the fi rst 
molecular markers used in chickpea genetic stud-
ies, but these markers were small in numbers and 
showed very low level of polymorphism in the 
cultivated species. Nevertheless, these markers 
were used in developing the fi rst linkage map of 

chickpea (Gaur and Slinkard  1990a ,  b ) and estab-
lishing phylogenetic relationships among annual 
 Cicer  species (Kazan and Muehlbauer  1991 ; 
Ahmad et al.  1992 ). The genetic maps developed 
from isozyme markers were further expanded 
using restriction fragment length polymorphisms 
(RFLP) and randomly amplifi ed polymorphic 
DNA (RAPD) markers (Simon and Muehlbauer 
 1997 ). The use of these markers was restricted, 
because of some limitations associated with 
them. The extensive use of molecular markers in 
chickpea genetics and breeding started only after 
the development of simple sequence repeat (SSR) 
markers. The multi-allelic and codominant nature 
of these markers made them ideal for genomic 
studies and for use in plant breeding. The SSR 
markers have been developed from sequence 
information obtained from various sources, 
including genomic libraries (Hüttel et al.  1999 ; 
Winter et al.  1999 ; Sethy et al.  2006a ,  b ; Nayak 
et al.  2010 ), bacterial artifi cial chromosome 
(BAC) libraries and BAC-end sequences 
(Lichtenzveig et al.  2005 ; Choudhary et al.  2006 ; 
Thudi et al.  2011 ), tentative unique sequences 
(TUS) (Hiremath et al.  2011 ) and expressed 
sequence tags (ESTs) (Coram and Pang  2005 ; 
Varshney et al.  2005 ,  2009a ; Gujaria et al.  2011 ; 
Hiremath et al.  2011 ). Over 2,000 SSR markers 
are now available for chickpea molecular analy-
sis. The recently published draft genome sequence 
of chickpea identifi ed over 48,000 SSRs suitable 
for PCR primer design for use as genetic markers 
(Varshney et al.  2013a ). 

 Diversity arrays technology (DArT), which 
utilizes the microarray platform to analyse DNA 
polymorphisms, is a high-throughput genome 
analysis method enabling a rapid and economical 
approach for screening a large number of marker 
loci (Jaccoud et al.  2001 ). In chickpea, 15,360 
DArT markers were generated from 94 diverse 
genotypes and 5,397 of these were found poly-
morphic (Thudi et al.  2011 ). The level of polymor-
phism observed for DArT markers was comparable 
to other crops like sorghum and cassava. Single 
nucleotide polymorphism (SNP) markers are the 
new class of markers and have become the pre-
ferred choice of markers because of their abun-
dance, codominant nature and amenability to 
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high-throughput analysis. Several thousand SNPs 
have been identifi ed from transcriptomic analysis 
in chickpea (Coram and Pang  2005 ; Varshney 
et al.  2009b ; Gujaria et al.  2011 ; Hiremath et al. 
 2011 ). The draft genome sequence of chickpea is 
now available (Varshney et al.  2013b ) and identi-
fi ed 76,084 SNPs in 15,526 genes. Of these, 
27,117 SNPs were identifi ed within the cultivated 
species and 54,178 SNPs between the cultivated 
species and its progenitor  C. reticulatum .  

3.9.2     Genome Mapping 

 All the markers developed in chickpea showed 
low level of polymorphism within the cultivated 
species as compared to between the cultivated 
and wild species. For this reason, the initial stud-
ies on genome mapping in chickpea used inter-
specifi c mapping populations. The fi rst linkage 
map of chickpea was developed by Gaur and 
Slinkard ( 1990a ,  b ) using isozyme markers and 
interspecifi c crosses of  C. arietinum  with  C. 
reticulatum  and  C. echinospermum . The DNA- 
based molecular markers, such as RAPDs and 
RFLPs, were later integrated to this map by 
Simon and Muehlbauer ( 1997 ). These initial 
studies used F 2  populations for the development 
of linkage maps. The fi rst mapping population of 
recombinant inbred lines (RILs) was developed 
from the interspecifi c cross  C. arietinum  (ICC 
4958) ×  C. reticulatum  (PI 489777) and has been 
considered as the reference mapping population 
for genome mapping in chickpea. The genotyp-
ing of this mapping population gave the fi rst large 
genetic map of chickpea consisting of 351 mark-
ers and covering a total distance of 2,077.9 cM 
(Winter et al.  2000 ). This map was further 
expanded by later studies using this reference 
mapping population. Nayak et al. ( 2010 ) devel-
oped a map with 521 markers and spanning 
2602.1 cM. Thudi et al. ( 2011 ) developed a com-
prehensive genetic map including 1,291 markers 
and spanning 845.56 cM. Recently, Hiremath 
et al. ( 2011 ) developed a genetic map comprising 
1,328 marker loci for this reference population. 
Several studies have been conducted on the 
development of genetic maps of chickpea based 

on intraspecifi c mapping populations (Cho et al. 
 2002 ; Flandez-Galvez et al.  2003a ,  b ; Cobos 
et al.  2005 ; Radhika et al.  2007 ; Anuradha et al. 
 2011 ; Garg Tosh  2012 ). Because of limited poly-
morphism in the cultivated chickpea, maps devel-
oped from intraspecifi c mapping populations had 
fewer markers (<250 markers) and less genome 
coverage (<800 cM). Consensus genetic maps 
using both interspecifi c and intraspecifi c popula-
tions were also developed. A consensus map 
based on fi ve interspecifi c ( C. arietinum  ×  C. 
reticulatum ) and fi ve intraspecifi c populations 
was developed by Millán et al. ( 2010 ). This map 
had integrated 555 marker loci. BAC and binary 
bacterial artifi cial chromosome (BIBAC) librar-
ies have been developed (Rajesh et al.  2004 ; 
Lichtenzveig et al.  2005 ; Zhang et al.  2010 ) and 
used in the development of a physical map of 
chickpea (Zhang et al.  2010 ). This physical map 
comprised 1,945 contigs, spanning about 1,088 Mb. 
Efforts have also been made to assign linkage 
groups to specifi c chromosomes using fl ow cytom-
etry and PCR-based primers that amplify sequence-
tagged microsatellite site markers (Tekeoglu et al. 
 2002 ; Zatloukalová et al.  2011 ). The linkage group 
8 (LG8) was assigned to chromosome H, LG5 to 
chromosome A, LG4 to chromosome E and LG3 to 
chromosome B. In other cases the chromosomes 
could not be sorted out separately, so LG1 and LG2 
were jointly assigned to chromosomes F and G, 
and LG6 and LG7 were jointly assigned to chro-
mosomes C and D.  

3.9.3     Molecular Mapping of Genes/
Quantitative Trait Loci 
Controlling Agronomically 
Important Traits 

 Several RIL mapping populations have been 
developed in chickpea at ICRISAT (Gaur et al. 
 2014b ) and several other institutes. Molecular 
markers have been identifi ed for the genes/QTLs 
linked to resistance to several diseases, including 
 Fusarium  wilt (Sharma et al.  2004 ,  2005 ; Cobos 
et al.  2005 ; Gowda et al.  2009 ; Garg Tosh  2012 ; 
Sabbavarapu et al.  2013 ),  Ascochyta  blight 
(Millán et al.  2003 ; Rakshit et al.  2003 ; Collard 
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et al.  2003 ; Udupa and Baum  2003 ; Cho et al. 
 2004 ; Iruela et al.  2006 ; Lichitenzveiz et al.  2006 ; 
Anbessa et al.  2009 ; Kottapalli et al.  2009 ; 
Aryamanesh et al.  2010 ; Garg Tosh  2012 ; 
Sabbavarapu et al.  2013 ),  Botrytis  grey mould 
(Anuradha et al.  2011 ) and rust (Madrid et al. 
 2008 ); salinity tolerance (Vadez et al.  2012 ); 
traits related to drought tolerance (Chandra et al. 
 2004 ; Molina et al.  2008 ; Rehman  2009 ; Rehman 
et al.  2012 ; ICRISAT unpublished results), 
growth habit and podding (Rajesh et al.  2002 ; 
Radhika et al.  2007 ; Gowda et al.  2009 ; 
Aryamanesh et al.  2010 ; Garg Tosh et al.  2012 ); 
phenology (Aryamanesh et al.  2010 ; Rehman 
 2009 ; Rehman et al.  2012 ); and seed characteris-
tics (Gowda et al.  2009 ). Several of these studies 
have been summarized in earlier reviews 
(Varshney et al.  2007 ; Upadhyaya et al.  2011 ; 
Gaur et al.  2012b ,  2014b ).  

3.9.4     Marker-Assisted Breeding 

 Marker-assisted breeding can greatly improve the 
precision and effi ciency of breeding programmes. 
Recent advances in the development of molecu-
lar markers and identifi cation of molecular mark-
ers linked to genes/QTLs controlling traits of 
breeders’ interest have encouraged applications 
of marker-assisted backcrossing (MABC) in 
chickpea improvement. A ‘QTL-hotspot’ contain-
ing QTLs for several root and drought tolerance 
traits was transferred from the drought-tolerant line 
ICC4958 to a leading  desi  chickpea cultivar JG 11 
through MABC (Varshney et al.  2013b ). Varshney 
et al. ( 2013b ) reviewed the status of genomic 
resources available for chickpea improvement and 
suggested ways to go for genomic-assisted breed-
ing in chickpea. Multilocation evaluations of intro-
gression lines (ILs) in India, Ethiopia and Kenya 
led to the identifi cation of lines with signifi cantly 
higher yield than JG11 at each location and in each 
growing condition (rainfed/irrigated) (Gaur et al. 
 2013b ). MABC is also being used for introgress-
ing resistance to various diseases in chickpea. 
ICRISAT is pyramiding resistances to two races 
of  Fusarium  wilt ( foc1  and  foc3 ) from WR315 
and 2 QTLs for  Ascochyta  blight resistance from 

ILC3279 line into C214. Marker- assisted recur-
rent selection (MARS) has also been initiated in 
chickpea for the improvement of yield, particu-
larly under moisture stress conditions. Two good-
by-good crosses (JG 11 × ICCV 04112 and JG 
130 × ICCV 05107) are being used at ICRISAT to 
implement MARS (Gaur et al.  2014b ). QTLs 
were identifi ed specifi c to these crosses by geno-
typing in F 3  and phenotyping of F 3:5  progenies. A 
set of eight lines were selected for each cross 
using OptiMAS 1.0 to pyramid superior alleles of 
the favourable QTLs identifi ed. Superior lines will 
be developed by accumulating favourable alleles 
through successive intercrossing using genotypic 
selection. In addition to MARS, genome-wide 
selection (GWS) or genomic selection (GS) has 
been proposed as a potential approach for improv-
ing complex traits governed by many genes/QTLs. 
In this approach, both phenotyping and genotyp-
ing data are used to predict genomic estimated 
breeding values (GEBVs) of progenies and supe-
rior progenies are selected based on GEBVs.   

3.10     Conclusions 

 The narrow genetic base of cultivated chickpea 
warrants systematic collection, documentation 
and evaluation of chickpea germplasm, particu-
larly wild annual  Cicer  species for effective and 
effi cient use in chickpea breeding programmes. 
Researchers have clearly demonstrated that desir-
able alien genes conferring resistance against 
biotic and abiotic stresses can be successfully 
introgressed from unexploited wild annual  Cicer  
species to the cultivated chickpea. The valuable 
genetic resources present in the primary gene pool 
comprising progenitor species can be successfully 
utilized for genetic enhancement. However, most 
of the wild species possessing high degree of 
resistance to multiple stresses are present in the 
secondary and tertiary gene pools, where hybrid-
ization with cultivated species is often limited due 
to reproductive barriers. There are indications that 
useful traits which are not available in cultigens 
may be recovered in the segregating generation of 
crosses involving wild  Cicer  species. Further the 
molecular markers can be effectively used to 
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monitor alien gene introgression into the elite 
cultivars. Besides major genes, the transfer of 
agronomically important traits into elite cultivars 
has been made easy and practical through marker-
assisted selection. Molecular markers such as 
SSR and SNP are useful for the construction of 
high-density genetic maps of chickpea which will 
be very useful to identify genes/QTLs for stress 
resistance, quality traits and other yield contribut-
ing characters.     
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