1,342 research outputs found

    The Extremes of Thermonuclear Supernovae

    Full text link
    The majority of thermonuclear explosions in the Universe seem to proceed in a rather standardised way, as explosions of carbon-oxygen (CO) white dwarfs in binary systems, leading to 'normal' Type Ia supernovae (SNe Ia). However, over the years a number of objects have been found which deviate from normal SNe Ia in their observational properties, and which require different and not seldom more extreme progenitor systems. While the 'traditional' classes of peculiar SNe Ia - luminous '91T-like' and faint '91bg-like' objects - have been known since the early 1990s, other classes of even more unusual transients have only been established 20 years later, fostered by the advent of new wide-field SN surveys such as the Palomar Transient Factory. These include the faint but slowly declining '02es-like' SNe, 'Ca-rich' transients residing in the luminosity gap between classical novae and supernovae, extremely short-lived, fast-declining transients, and the very luminous so-called 'super-Chandrasekhar' SNe Ia. Not all of them are necessarily thermonuclear explosions, but there are good arguments in favour of a thermonuclear origin for most of them. The aim of this chapter is to provide an overview of the zoo of potentially thermonuclear transients, reviewing their observational characteristics and discussing possible explosion scenarios.Comment: Author version of a chapter for the 'Handbook of Supernovae', edited by A. Alsabti and P. Murdin, Springer. 50 pages, 7 figure

    The Challenge of Applying and Undertaking Research in Female Sport.

    Get PDF
    In recent years there has been an exponential rise in the professionalism and success of female sports. Practitioners (e.g., sport science professionals) aim to apply evidence-informed approaches to optimise athlete performance and well-being. Evidence-informed practices should be derived from research literature. Given the lack of research on elite female athletes, this is challenging at present. This limits the ability to adopt an evidence-informed approach when working in female sports, and as such, we are likely failing to maximize the performance potential of female athletes. This article discusses the challenges of applying an evidence base derived from male athletes to female athletes. A conceptual framework is presented, which depicts the need to question the current (male) evidence base due to the differences of the "female athlete" and the "female sporting environment," which pose a number of challenges for practitioners working in the field. Until a comparable applied sport science research evidence base is established in female athletes, evidence-informed approaches will remain a challenge for those working in female sport

    Synoptic timescale linkage between midlatitude winter troughs Sahara temperature patterns and northern Congo rainfall: A building block of regional climate variability

    Get PDF
    A coherent synoptic sequence, mostly over North Africa, is identified whereby an upper-level midlatitude trough (in November–March) excites several days of quasi-stationary near-surface warming across the Sahara, leading to rainfall events over northern Congo (NC), and perturbed weather more widely. Ahead of NC rainfall events, composite sequences first identify troughs for several days near Iberia, followed by relatively quick transfer to the Central Mediterranean (CMed). Iberia and CMed daily trough-strength indices reveal that both lead to warming and NC rainfall. Iberia trough linkages develop through West Africa and take longer to reach NC, while CMed linkages reach NC faster (2–3 days), with impact extent focused mostly south and east of CMed. Building up to the rainfall events, initial warming over the central Sahara migrates southeastward close to NC, ultimately with typical magnitude of about 1–2°C at 10–15°N. Such anomalies are statistically predictive for NC daily rainfall and associated nearby atmospheric features: anomalous low-level southerly wind and increased moisture; anomalous low-level westerly wind and vertical easterly shear to 600 hPa; increased mid-level moisture (600 hPa), which along with low-level moisture, connects northward into midlatitudes. A secondary route identified by which Iberia troughs can impact NC rainfall is through direct atmospheric teleconnection with precipitation to the west of NC, and subsequent migration of that convection eastward into NC. The eastern side of NC generally shows a small lag on western parts, and links more strongly to CMed troughs. Taken together, the lagged synoptic expression of Iberia and CMed troughs is widespread over several days, including much of North Africa (to equatorial latitudes), southwestern Asia, eastern Africa and the western Indian Ocean. Overall, these results can contribute to situational awareness for weather forecasters across the zones influenced by the troughs, while also providing a framework for climate timescale analyses

    At the crossroads of biomacromolecular research: highlighting the interdisciplinary nature of the field

    Get PDF
    Due to their complexity and wide-ranging utility, biomacromolecular research is an especially interdisciplinary branch of chemistry. It is my goal that the Biomacromolecules subject area of Chemistry Central Journal will parallel this richness and diversity. In this inaugural commentary, I attempt to set the stage for achieving this by highlighting several areas where biomacromolecular research overlaps more traditional chemistry sub-disciplines. Specifically, it is discussed how Materials Science and Biotechnology, Analytical Chemistry, Cell Biology and Chemical Theory are each integral to modern biomacromolecular research. Investigators with reports in any of these areas, or any other dealing with biomacromolecules, are encouraged to submit their research papers to Chemistry Central Journal

    Satellites and large doping- and temperature-dependence of electronic properties in hole-doped BaFe2As2

    Get PDF
    Over the last years, superconductivity has been discovered in several families of iron-based compounds. Despite intense research, even basic electronic properties of these materials, such as Fermi surfaces, effective electron masses, or orbital characters are still subject to debate. Here, we address an issue that has not been considered before, namely the consequences of dynamical screening of the Coulomb interactions among Fe-d electrons. We demonstrate its importance not only for correlation satellites seen in photoemission spectroscopy, but also for the low-energy electronic structure. From our analysis of the normal phase of BaFe2As2 emerges the picture of a strongly correlated compound with strongly doping- and temperature-dependent properties. In the hole overdoped regime, an incoherent metal is found, while Fermi-liquid behavior is recovered in the undoped compound. At optimal doping, the self-energy exhibits an unusual square-root energy dependence which leads to strong band renormalizations near the Fermi level

    The expression of mismatched repair genes and their correlation with clinicopathological parameters and response to neo-adjuvant chemotherapy in breast cancer

    Get PDF
    BACKGROUND: The DNA mismatch repair (MMR) pathway is an important post-replicative repair process. It is involved in the maintenance of genomic stability and MMR genes have therefore been named the proofreaders of replicating DNA. These genes repair the replicative errors of DNA and are thus imperative for genomic stability. The MMR genes have been found to be involved in promoting cytotoxicity, apoptosis, p53 phosphorylation and cell cycle arrest following exposure to exogenous DNA damaging agents. Loss of MMR function prevents the correction of replicative errors leading to instability of the genome, and can be detected by polymorphisms in micro satellites (1–6 nucleotide repeat sequences scattered in whole of the genome). This phenomenon, known as micro satellite instability (MSI), is a hallmark of MMR dysfunction and can be used as a marker of MMR dysfunction in colorectal and other malignancies. An alternative method for detection of MMR dysfunction is to test the expression of protein products of the MMR genes by immunohistochemistry (IHC), as mutations in these genes lead to reduced or absent expression of their gene products. Correlation between loss of MMR function and clinical, histopathological, behavioral parameters of the tumor and its response to chemotherapy in breast cancers may be of value in predicting tumor behavior and response to neoadjuvant chemotherapy (NACT). Neoadjuvant chemotherapy is an integral part of multimodal therapy for locally advanced breast cancer and predicting response may help in tailoring regimens in patients for optimum response. MATERIALS: After approval by the IRB(Institutional Review Board) and ethical committee of the hospital, 31 cases of locally advanced breast carcinoma (LABC) were studied to assess the correlation between MMR dysfunction, clinicopathological parameters and objective clinical response to neoadjuvant chemotherapy using immunohistochemistry. The immunohistochemical analysis for four MMR protein products -MLH1, MSH2, MSH6 and PMS2 was done in the pre NACT trucut biopsy specimen and after three cycles of NACT with C AF (cyclophosphamide, adriamycin, 5-fluorouracil) regimen, in the modified radical mastectomy specimen. RESULTS AND CONCLUSION: There was no significant correlation observed between expression of MMR proteins and age, family history, tumor size or histological type. However there was a statistically significant negative correlation between MLH1, MSH2 expression and histological grade. There was also a negative correlation observed between PMS2 expression after neo-adjuvant chemotherapy and clinical response. Cases with high post NACT expression of PMS2 were poor responders to chemotherapy. MSH6 was the most frequently altered MMR gene, with a negativity rate of 48% and the patients with high expression responded poorly to NACT. The study highlights the possible role of MMR expression in predicting aggressive tumor behavior (histological grade) and response to neoadjuvant chemotherapy in patients with LABC

    Converting simulated total dry matter to fresh marketable yield for field vegetables at a range of nitrogen supply levels

    Get PDF
    Simultaneous analysis of economic and environmental performance of horticultural crop production requires qualified assumptions on the effect of management options, and particularly of nitrogen (N) fertilisation, on the net returns of the farm. Dynamic soil-plant-environment simulation models for agro-ecosystems are frequently applied to predict crop yield, generally as dry matter per area, and the environmental impact of production. Economic analysis requires conversion of yields to fresh marketable weight, which is not easy to calculate for vegetables, since different species have different properties and special market requirements. Furthermore, the marketable part of many vegetables is dependent on N availability during growth, which may lead to complete crop failure under sub-optimal N supply in tightly calculated N fertiliser regimes or low-input systems. In this paper we present two methods for converting simulated total dry matter to marketable fresh matter yield for various vegetables and European growth conditions, taking into consideration the effect of N supply: (i) a regression based function for vegetables sold as bulk or bunching ware and (ii) a population approach for piecewise sold row crops. For both methods, to be used in the context of a dynamic simulation model, parameter values were compiled from a literature survey. Implemented in such a model, both algorithms were tested against experimental field data, yielding an Index of Agreement of 0.80 for the regression strategy and 0.90 for the population strategy. Furthermore, the population strategy was capable of reflecting rather well the effect of crop spacing on yield and the effect of N supply on product grading

    Plasmonically Enhanced Reflectance of Heat Radiation from Low-Bandgap Semiconductor Microinclusions

    Get PDF
    Increased reflectance from the inclusion of highly scattering particles at low volume fractions in an insulating dielectric offers a promising way to reduce radiative thermal losses at high temperatures. Here, we investigate plasmonic resonance driven enhanced scattering from microinclusions of low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating composite to tailor its infrared reflectance for minimizing thermal losses from radiative transfer. To this end, we compute the spectral properties of the microcomposites using Monte Carlo modeling and compare them with results from Fresnel equations. The role of particle size-dependent Mie scattering and absorption efficiencies, and, scattering anisotropy are studied to identify the optimal microinclusion size and material parameters for maximizing the reflectance of the thermal radiation. For composites with Si and Ge microinclusions we obtain reflectance efficiencies of 57 - 65% for the incident blackbody radiation from sources at temperatures in the range 400 - 1600 {\deg}C. Furthermore, we observe a broadbanding of the reflectance spectra from the plasmonic resonances due to charge carriers generated from defect states within the semiconductor bandgap. Our results thus open up the possibility of developing efficient high-temperature thermal insulators through use of the low-bandgap semiconductor microinclusions in insulating dielectrics.Comment: Main article (8 Figures and 2 Tables) + Supporting Information (8 Figures
    • …
    corecore