The majority of thermonuclear explosions in the Universe seem to proceed in a
rather standardised way, as explosions of carbon-oxygen (CO) white dwarfs in
binary systems, leading to 'normal' Type Ia supernovae (SNe Ia). However, over
the years a number of objects have been found which deviate from normal SNe Ia
in their observational properties, and which require different and not seldom
more extreme progenitor systems. While the 'traditional' classes of peculiar
SNe Ia - luminous '91T-like' and faint '91bg-like' objects - have been known
since the early 1990s, other classes of even more unusual transients have only
been established 20 years later, fostered by the advent of new wide-field SN
surveys such as the Palomar Transient Factory. These include the faint but
slowly declining '02es-like' SNe, 'Ca-rich' transients residing in the
luminosity gap between classical novae and supernovae, extremely short-lived,
fast-declining transients, and the very luminous so-called
'super-Chandrasekhar' SNe Ia. Not all of them are necessarily thermonuclear
explosions, but there are good arguments in favour of a thermonuclear origin
for most of them. The aim of this chapter is to provide an overview of the zoo
of potentially thermonuclear transients, reviewing their observational
characteristics and discussing possible explosion scenarios.Comment: Author version of a chapter for the 'Handbook of Supernovae', edited
by A. Alsabti and P. Murdin, Springer. 50 pages, 7 figure