8,577 research outputs found
Dynamical evolution of escaped plutinos, another source of Centaurs
It was shown in previous works the existence of weakly chaotic orbits in the
plutino population that diffuse very slowly. These orbits correspond to
long-term plutino escapers and then represent the plutinos that are escaping
from the resonance at present. In this paper we perform numerical simulations
in order to explore the dynamical evolution of plutinos recently escaped from
the resonance. The numerical simulations were divided in two parts. In the
first one we evolved 20,000 test particles in the resonance in order to detect
and select the long-term escapers. In the second one, we numerically integrate
the selected escaped plutinos in order to study their dynamical post escaped
behavior. Our main results include the characterization of the routes of escape
of plutinos and their evolution in the Centaur zone. We obtained a present rate
of escape of plutinos between 1 and 10 every 10 years. The escaped plutinos
have a mean lifetime in the Centaur zone of 108 Myr and their contribution to
the Centaur population would be a fraction of less than 6 % of the total
Centaur population. In this way, escaped plutinos would be a secondary source
of Centaurs.Comment: Accepted for publication in A&
Planar Drawings of Fixed-Mobile Bigraphs
A fixed-mobile bigraph G is a bipartite graph such that the vertices of one
partition set are given with fixed positions in the plane and the mobile
vertices of the other part, together with the edges, must be added to the
drawing. We assume that G is planar and study the problem of finding, for a
given k >= 0, a planar poly-line drawing of G with at most k bends per edge. In
the most general case, we show NP-hardness. For k=0 and under additional
constraints on the positions of the fixed or mobile vertices, we either prove
that the problem is polynomial-time solvable or prove that it belongs to NP.
Finally, we present a polynomial-time testing algorithm for a certain type of
"layered" 1-bend drawings
On Smooth Orthogonal and Octilinear Drawings: Relations, Complexity and Kandinsky Drawings
We study two variants of the well-known orthogonal drawing model: (i) the
smooth orthogonal, and (ii) the octilinear. Both models form an extension of
the orthogonal, by supporting one additional type of edge segments (circular
arcs and diagonal segments, respectively).
For planar graphs of max-degree 4, we analyze relationships between the graph
classes that can be drawn bendless in the two models and we also prove
NP-hardness for a restricted version of the bendless drawing problem for both
models. For planar graphs of higher degree, we present an algorithm that
produces bi-monotone smooth orthogonal drawings with at most two segments per
edge, which also guarantees a linear number of edges with exactly one segment.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
Non-perturbative Heavy Quark Effective Theory
We explain how to perform non-perturbative computations in HQET on the
lattice. In particular the problem of the subtraction of power-law divergences
is solved by a non-perturbative matching of HQET and QCD. As examples, we
present a full calculation of the mass of the b-quark in the combined static
and quenched approximation and outline an alternative way to obtain the B-meson
decay constant at lowest order. Since no excessively large lattices are
required, our strategy can also be applied including dynamical fermions.Comment: 27 pages including figures and tables, latex2e; version published in
JHEP, typos corrected and 1 reference adde
Equation of State in Relativistic Magnetohydrodynamics: variable versus constant adiabatic index
The role of the equation of state for a perfectly conducting, relativistic
magnetized fluid is the main subject of this work. The ideal constant
-law equation of state, commonly adopted in a wide range of
astrophysical applications, is compared with a more realistic equation of state
that better approximates the single-specie relativistic gas. The paper focus on
three different topics. First, the influence of a more realistic equation of
state on the propagation of fast magneto-sonic shocks is investigated. This
calls into question the validity of the constant -law equation of state
in problems where the temperature of the gas substantially changes across
hydromagnetic waves. Second, we present a new inversion scheme to recover
primitive variables (such as rest-mass density and pressure) from conservative
ones that allows for a general equation of state and avoids catastrophic
numerical cancellations in the non-relativistic and ultrarelativistic limits.
Finally, selected numerical tests of astrophysical relevance (including
magnetized accretion flows around Kerr black holes) are compared using
different equations of state. Our main conclusion is that the choice of a
realistic equation of state can considerably bear upon the solution when
transitions from cold to hot gas (or viceversa) are present. Under these
circumstances, a polytropic equation of state can significantly endanger the
solution.Comment: 14 pages, 14 figure
Superconducting tantalum disulfide nanotapes; growth, structure and stoichiometry
Superconducting tantalum disulfide nanowires have been synthesised by surface-assisted chemical vapour transport (SACVT) methods and their crystal structure, morphology and stoichiometry studied by powder X-ray diffraction (PXD), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and nanodiffraction. The evolution of morphology, stoichiometry and structure of materials grown by SACVT methods in the Ta-S system with reaction temperature was investigated systematically. High-aspect-ratio, superconducting disulfide nanowires are produced at intermediate reaction temperatures (650 degrees C). The superconducting wires are single crystalline, adopt the 2H polytypic structure (hexagonal space group P6(3)/mmc: a = 3.32(2) angstrom, c = 12.159(2) angstrom; c/a = 3.66) and grow in the <2<(1)over bar>(1) over bar0> direction. The nanowires are of rectangular cross-section forming nanotapes composed of bundles of much smaller fibres that grow cooperatively. At lower reaction temperatures nanowires close to a composition of TaS3 are produced whereas elevated temperatures yield platelets of 1T TaS2
The scattering of small bodies in planetary systems: constraints on the possible orbits of cometary material
The scattering of small bodies by planets is an important dynamical process
in planetary systems. We present an analytical model to describe this process
using the simplifying assumption that each particle's dynamics is dominated by
a single planet at a time. As such the scattering process can be considered as
a series of three body problems during each of which the Tisserand parameter
with respect to the relevant planet is conserved. This constrains the orbital
parameter space into which a particle can be scattered. Such arguments have
previously been applied to the process by which comets are scattered to the
inner Solar System from the Kuiper belt. Our analysis generalises this for an
arbitrary planetary system. For particles scattered from an outer belt directly
along a chain of planets, based on the initial value of the Tisserand
parameter, we find that it is possible to (i) determine which planets can eject
the particles from the system, (ii) define a minimum stellar distance to which
particles can be scattered, and (iii) constrain range of particle inclinations
(and hence the disc height) at different distances. Applying this to the Solar
System, we determine that the planets are close to optimally separated for
scattering particles between them. Concerning warm dust found around stars that
also have Kuiper belt analogues, we show that, if there is to be a dynamical
link between the outer and inner regions, then certain architectures for the
intervening planetary system are incapable of producing the observations.
Furthermore we show that for certain planetary systems, comets can be scattered
from an outer belt, or with fewer constraints, from an Oort cloud analogue,
onto star-grazing orbits, in support of a planetary origin to the metal
pollution and dustiness of some nearby white dwarfs
A Coloring Algorithm for Disambiguating Graph and Map Drawings
Drawings of non-planar graphs always result in edge crossings. When there are
many edges crossing at small angles, it is often difficult to follow these
edges, because of the multiple visual paths resulted from the crossings that
slow down eye movements. In this paper we propose an algorithm that
disambiguates the edges with automatic selection of distinctive colors. Our
proposed algorithm computes a near optimal color assignment of a dual collision
graph, using a novel branch-and-bound procedure applied to a space
decomposition of the color gamut. We give examples demonstrating the
effectiveness of this approach in clarifying drawings of real world graphs and
maps
Highly efficient blueish-green fluorescent OLEDs based on AIE liquid crystal molecules : From ingenious molecular design to multifunction materials
In order to seek the balance point between liquid crystallinity and high efficiency emission, two novel aggregation-induced emission-based (AIE) liquid crystal materials of TPE-PBN and TPE-2PBN, which contain a tetraphenylethene derivative as the emission core and a 4-cynobiphenyl moiety as the mesogenic unit, were designed and prepared. Both simple molecules showed a mesophase at high temperature as evidenced by polarised optical microscopy (POM), differential scanning calorimetry (DSC) and temperature-dependent X-ray diffraction (XRD). Simultaneously, TPE-PBN and TPE-2PBN presented clear AIE characteristics in the blueish-green region and achieved a high emission quantum efficiency of 71% and 83% in the solid state, respectively. Due to the self-assembly properties of thermotropic liquid crystals, both compounds showed higher hole mobilities in the annealed films than in pristine films. Employing TPE-PBN and TPE-2PBN as the emitting materials, both non-doped devices and doped devices were fabricated. The TPE-PBN-based doped OLEDs showed a better device performance with an external quantum efficiency (EQE) of 4.1% which is among the highest EQEs of blue AIE fluorescent OLEDs
An automated fitting procedure and software for dose-response curves with multiphasic features.
In cancer pharmacology (and many other areas), most dose-response curves are satisfactorily described by a classical Hill equation (i.e. 4 parameters logistical). Nevertheless, there are instances where the marked presence of more than one point of inflection, or the presence of combined agonist and antagonist effects, prevents straight-forward modelling of the data via a standard Hill equation. Here we propose a modified model and automated fitting procedure to describe dose-response curves with multiphasic features. The resulting general model enables interpreting each phase of the dose-response as an independent dose-dependent process. We developed an algorithm which automatically generates and ranks dose-response models with varying degrees of multiphasic features. The algorithm was implemented in new freely available Dr Fit software (sourceforge.net/projects/drfit/). We show how our approach is successful in describing dose-response curves with multiphasic features. Additionally, we analysed a large cancer cell viability screen involving 11650 dose-response curves. Based on our algorithm, we found that 28% of cases were better described by a multiphasic model than by the Hill model. We thus provide a robust approach to fit dose-response curves with various degrees of complexity, which, together with the provided software implementation, should enable a wide audience to easily process their own data.This work was funded by Cancer Research UK grant C14303/A17197.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/srep1470
- …
