29,615 research outputs found

    Short-duration lensing events: I. wide-orbit planets? free-floating low-mass objects? or high-velocity stars?

    Full text link
    Short duration lensing events tend to be generated by low-mass lenses or by lenses with high transverse velocities. Furthermore, for any given lens mass and speed, events of short duration are preferentially caused by nearby lenses (mesolenses) that can be studied in detail, or else by lenses so close to the source star that finite-source-size effects may be detected, yielding information about both the Einstein ring radius and the surface of the lensed star. Planets causing short-duration events may be in orbits with any orientation, and may have semimajor axes smaller than an AU, or they may reach the outer limits of their planetary systems, in the region corresponding to the Solar System's Oort Cloud. They can have masses larger than Jupiter's or smaller than Pluto's. Lensing therefore has a unique potential to expand our understanding of planetary systems. A particular advantage of lensing is that it can provide precision measurements of system parameters, including the masses of and projected separation between star and planet. We demonstrate how the parameters can be extracted and show that a great deal can be learned. For example, it is remarkable that the gravitational mass of nearby free-floating planet-mass lenses can be measured by complementing observations of a photometric event with deep images that detect the planet itself. A fraction of short events may be caused by high-velocity stars located within a kpc. Many high-velocity lenses are likely to be neutron stars that received large natal kicks. Other high-speed stars may be members of the halo population. Still others may be hypervelocity stars that have been ejected from the Galactic Center, or runaway stars escaped from close binaries, possibly including the progenitor binaries of Type Ia supernovae.Comment: 17 pages; 2 figures; submitted to ApJ 3 July 200

    Neural mechanisms of top-down control during visual search: effects of template complexity

    Get PDF
    Neural mechanisms of top-down control during visual search: effects of template complexit

    The Progenitors of Type Ia Supernovae: II. Are they Double-Degenerate Binaries? The Symbiotic Channel

    Full text link
    In order for a white dwarf (WD) to achieve the Chandrasekhar mass, M_C, and explode as a Type Ia supernova (SNIa), it must interact with another star, either accreting matter from or merging with it. The failure to identify the types of binaries which produce SNeIa is the "progenitor problem". Its solution is required if we are to utilize the full potential of SNeIa to elucidate basic cosmological and physical principles. In single-degenerate models, a WD accretes and burns matter at high rates. Nuclear-burning WDs (NBWDs) with mass close to M_C are hot and luminous, potentially detectable as supersoft x-ray sources (SSSs). In previous work we showed that > 90-99% of the required number of progenitors do not appear as SSSs during most of the crucial phase of mass increase. The obvious implication is that double-degenerate (DD) binaries form the main class of progenitors. We show in this paper, however, that many binaries that later become DDs must pass through a long-lived NBWD phase during which they are potentially detectable as SSSs. The paucity of SSSs is therefore not a strong argument in favor of DD models. Those NBWDs that are the progenitors of DD binaries are likely to appear as symbiotic binaries for intervals > 10^6 years. In fact, symbiotic pre-DDs should be common, whether or not the WDs eventually produce SNeIa. The key to solving the progenitor problem lies in understanding the appearance of NBWDs. Most do not appear as SSSs most of the time. We therefore consider the evolution of NBWDs to address the question of what their appearance may be and how we can hope to detect them.Comment: 24 pages; 5 figures; submitted to Ap

    Introducing Parallelism to the Ranges TS

    Get PDF
    The current interface provided by the C++17 parallel algorithms poses some limitations with respect to parallel data access and heterogeneous systems, such as personal computers and server nodes with GPUs, smartphones, and embedded System on a Chip chipsets. In this paper, we present a summary of why we believe the Ranges TS solves these problems, and also improves both programmability and performance on heterogeneous platforms. The complete paper has been submitted to WG21 for consideration, and here we present a summary of the changes proposed alongside new performance results. To the best of our knowledge, this is the first paper presented to WG21 that unifies the Ranges TS with the parallel algorithms introduced in C++17. Although there are various points of intersection, we will focus on the composability of functions, and the benefit that this brings to accelerator devices via kernel fusion

    Topological properties of full QCD at the phase transition

    Get PDF
    We investigate the topological properties of the QCD vacuum with 4 flavours of dynamical staggered fermions at finite temperature. To calculate the topological susceptibility we use the field-theoretical method. As in the quenched case, a sharp drop is observed for the topological susceptibility across the phase transition.Comment: LATTICE98(confine

    Deconfining transition in two-flavor QCD

    Get PDF
    The order and the nature of the finite-temperature phase transition of QCD with two flavors of dynamical quarks is investigated. An analysis of the critical exponent of the specific heat is performed through finite-size and finite-mass scaling of various susceptibilities. Dual superconductivity of QCD vacuum is investigated using a disorder parameter, namely the v.e.v. of a monopole creation operator. Hybrid R simulations were run at lattice spatial sizes of 12312^3, 16316^3, 20320^3 and 32332^3 and temporal size Nt=4N_t=4, with quark masses in the range amq=0.3−0.01am_q = 0.3 - 0.01.Comment: Lattice2003(topology), 3 page

    Phase Dependency of the Human Primary Motor Cortex and Cholinergic Inhibition Cancelation during Beta tACS

    Get PDF
    The human motor cortex has a tendency to resonant activity at about 20 Hz so stimulation should more readily entrain neuronal populations at this frequency. We investigated whether and how different interneuronal circuits contribute to such resonance by using transcranial magnetic stimulation (TMS) during transcranial alternating current stimulation (tACS) at motor (20 Hz) and a nonmotor resonance frequency (7 Hz). We tested different TMS interneuronal protocols and triggered TMS pulses at different tACS phases. The effect of cholinergic short-latency afferent inhibition (SAI) was abolished by 20 Hz tACS, linking cortical beta activity to sensorimotor integration. However, this effect occurred regardless of the tACS phase. In contrast, 20 Hz tACS selectively modulated MEP size according to the phase of tACS during single pulse, GABAAergic short-interval intracortical inhibition (SICI) and glutamatergic intracortical facilitation (ICF). For SICI this phase effect was more marked during 20 Hz stimulation. Phase modulation of SICI also depended on whether or not spontaneous beta activity occurred at ~20 Hz, supporting an interaction effect between tACS and underlying circuit resonances. The present study provides in vivo evidence linking cortical beta activity to sensorimotor integration, and for beta oscillations in motor cortex being promoted by resonance in GABAAergic interneuronal circuits

    Hide and seek between Andromeda's halo, disk, and giant stream

    Get PDF
    Photometry in B, V (down to V ~ 26 mag) is presented for two 23' x 23' fields of the Andromeda galaxy (M31) that were observed with the blue channel camera of the Large Binocular Telescope during the Science Demonstration Time. Each field covers an area of about 5.1kpc x 5.1kpc at the distance of M31 ((m-M)o ~ 24.4 mag), sampling, respectively, a northeast region close to the M31 giant stream (field S2), and an eastern portion of the halo in the direction of the galaxy minor axis (field H1). The stream field spans a region that includes Andromeda's disk and the giant stream, and this is reflected in the complexity of the color magnitude diagram of the field. One corner of the halo field also includes a portion of the giant stream. Even though these demonstration time data were obtained under non-optimal observing conditions the B photometry, acquired in time-series mode, allowed us to identify 274 variable stars (among which 96 are bona fide and 31 are candidate RR Lyrae stars, 71 are Cepheids, and 16 are binary systems) by applying the image subtraction technique to selected portions of the observed fields. Differential flux light curves were obtained for the vast majority of these variables. Our sample includes mainly pulsating stars which populate the instability strip from the Classical Cepheids down to the RR Lyrae stars, thus tracing the different stellar generations in these regions of M31 down to the horizontal branch of the oldest (t ~ 10 Gyr) component.Comment: 59 pages, 26 figures, 12 tables, ApJ in pres

    Black Hole entropy for two higher derivative theories of gravity

    Full text link
    The dark energy issue is focusing the attention of an incresing number of physicists all over the world. Among the possible alternatives in order to explain what as been named the "Mystery of the Millennium" are the so-called Modified Theories of Gravity. A crucial test for such models is represented by the existence and (if this is the case) the properties of their black hole solutions. Nowadays, to our knowledge, only two non-trivial, spherically symmetric, solutions with vanishing cosmological constant are known by Barrow & Clifton (2005) and Deser, Sarioglu & Tekin (2008). Aim of the paper is to discuss some features of such solutions, with emphasis on their thermodynamic properties such as entropy and temperature, little progress being possible along the way which leads to a consistent definition of mass.Comment: 10 pages, 1 figur
    • 

    corecore