1,981 research outputs found
Further evidence for the planet around 51 Pegasi
The discovery of the planet around the solar-type star 51 Pegasi marked a
watershed in the search for extrasolar planets. Since then seven other
solar-type stars have been discovered, of which several have surprisingly short
orbital periods, like the planet around 51 Peg. These planets were detected
using the indirect technique of measuring variations in the Doppler shifts of
lines in the spectra of the primary stars. But it is possible that oscillations
of the stars themselves (or other effects) could mimic the signature of the
planets, particularly around the short-period planets. The apparent lack of
spectral and brightness variations, however, led to widespread acceptance that
there is a planet around 51 Peg. This conclusion was challenged by the
observation of systematic variations in the line profile shapes of 51 Peg,
which suggested stellar oscillations. If these observations are correct, then
there is no need to invoke a planet around 51 Peg to explain the data. Here we
report observations of 51 Peg at a much higher spectral resolution than those
in ref.9, in which we find no evidence for systematic changes in the line
shapes. The data are most consistent with a planetary companion to 51 Peg.Comment: LaTeX, 6 pages, 2 figures. To appear in 8 January 1998 issue of
Natur
A one-year trial of lamivudine for chronic hepatitis B
Background and Methods: In preliminary trials, lamivudine, an oral nucleoside analogue, has shown promise for the treatment of chronic hepatitis B. We conducted a one-year double-blind trial of lamivudine in 358 Chinese patients with chronic hepatitis B. The patients were randomly assigned to receive 25 mg of lamivudine (142 patients), 100 mg of lamivudine (143), or placebo (73) orally once daily. The patients underwent liver biopsies before entering the study and after completing the assigned treatment regimen. The primary end point was a reduction of at least two points in the Knodell necroinflammatory score. Results: Hepatic necroinflammatory activity improved by two points or more in 56 percent of the patients receiving 100 mg of lamivudine, 49 percent of those receiving 25 mg of lamivudine, and 25 percent of those receiving placebo (P<0.001 and P=0.001, respectively, for the comparisons of lamivudine treatment with placebo). Necroinflammatory activity worsened in 7 percent of the patients receiving 100 mg of lamivudine, 8 percent of those receiving 25 mg, and 26 percent of those receiving placebo. The 100mg dose of lamivudine was associated with a reduced progression of fibrosis (P=0.01 for the comparison with placebo) and with the highest rate of hepatitis B e antigen (HBeAg) seroconversion (loss of HBeAg, development of antibody to HBeAg, and undetectable HBV DNA) (16 percent), the greatest suppression of HBV DNA (98 percent reduction at week 52 as compared with the base-line value), and the highest rate of sustained normalization of alanine aminotransferase levels (72 percent). Ninety-six percent of the patients completed the study. The incidence of adverse events was similar in all groups, and there were few serious events. Conclusions: In a one-year study, lamivudine was associated with substantial histologic improvement in many patients with chronic hepatitis B. A daily dose of 100 mg was more effective than a daily dose of 25 mg.published_or_final_versio
Misaligned spin and orbital axes cause the anomalous precession of DI Herculis
The orbits of binary stars precess as a result of general relativistic
effects, forces arising from the asphericity of the stars, and forces from
additional stars or planets in the system. For most binaries, the theoretical
and observed precession rates are in agreement. One system, however -- DI
Herculis -- has resisted explanation for 30 years. The observed precession rate
is a factor of four slower than the theoretical rate, a disagreement that once
was interpreted as evidence for a failure of general relativity. Among the
contemporary explanations are the existence of a circumbinary planet and a
large tilt of the stellar spin axes with respect to the orbit. Here we report
that both stars of DI Herculis rotate with their spin axes nearly perpendicular
to the orbital axis (contrary to the usual assumption for close binary stars).
The rotationally induced stellar oblateness causes precession in the direction
opposite to that of relativistic precession, thereby reconciling the
theoretical and observed rates.Comment: Nature, in press [11 pg
The N-terminal intrinsically disordered domain of mgm101p is localized to the mitochondrial nucleoid.
The mitochondrial genome maintenance gene, MGM101, is essential for yeasts that depend on mitochondrial DNA replication. Previously, in Saccharomyces cerevisiae, it has been found that the carboxy-terminal two-thirds of Mgm101p has a functional core. Furthermore, there is a high level of amino acid sequence conservation in this region from widely diverse species. By contrast, the amino-terminal region, that is also essential for function, does not have recognizable conservation. Using a bioinformatic approach we find that the functional core from yeast and a corresponding region of Mgm101p from the coral Acropora millepora have an ordered structure, while the N-terminal domains of sequences from yeast and coral are predicted to be disordered. To examine whether ordered and disordered domains of Mgm101p have specific or general functions we made chimeric proteins from yeast and coral by swapping the two regions. We find, by an in vivo assay in S.cerevisiae, that the ordered domain of A.millepora can functionally replace the yeast core region but the disordered domain of the coral protein cannot substitute for its yeast counterpart. Mgm101p is found in the mitochondrial nucleoid along with enzymes and proteins involved in mtDNA replication. By attaching green fluorescent protein to the N-terminal disordered domain of yeast Mgm101p we find that GFP is still directed to the mitochondrial nucleoid where full-length Mgm101p-GFP is targeted
Probable detection of starlight reflected from the giant exoplanet orbiting tau Bootis
Giant planets orbiting stars other than the Sun are clearly detectable
through precise radial-velocity measurements of the orbital reflex motion of
the parent star. In the four years since the discovery of the companion to the
star 51 Peg, similar low-amplitude ``Doppler star wobbles'' have revealed the
presence of some 20 planets orbiting nearby solar-type stars. Several of these
newly-discovered planets are very close to their parent stars, in orbits with
periods of only a few days. Being an indirect technique, however, the
reflex-velocity method has little to say about the sizes or compositions of the
planets, and can only place lower limits on their masses. Here we report the
use of high-resolution optical spectroscopy to achieve a probable detection of
the Doppler-shifted signature of starlight reflected from one of these objects,
the giant exoplanet orbiting the star tau Bootis. Our data give the planet's
orbital inclination i=29 degrees, indicating that its mass is some 8 times that
of Jupiter, and suggest strongly that the planet has the size and reflectivity
expected for a gas-giant planet.Comment: 15 pages, 4 figures. (Fig 1 and equation for epsilon on p1 para 2
revised; changed from double to single spacing
A new concept for the combination of optical interferometers and high-resolution spectrographs
The combination of high spatial and spectral resolution in optical astronomy
enables new observational approaches to many open problems in stellar and
circumstellar astrophysics. However, constructing a high-resolution
spectrograph for an interferometer is a costly and time-intensive undertaking.
Our aim is to show that, by coupling existing high-resolution spectrographs to
existing interferometers, one could observe in the domain of high spectral and
spatial resolution, and avoid the construction of a new complex and expensive
instrument. We investigate in this article the different challenges which arise
from combining an interferometer with a high-resolution spectrograph. The
requirements for the different sub-systems are determined, with special
attention given to the problems of fringe tracking and dispersion. A concept
study for the combination of the VLTI (Very Large Telescope Interferometer)
with UVES (UV-Visual Echelle Spectrograph) is carried out, and several other
specific instrument pairings are discussed. We show that the proposed
combination of an interferometer with a high-resolution spectrograph is indeed
feasible with current technology, for a fraction of the cost of building a
whole new spectrograph. The impact on the existing instruments and their
ongoing programs would be minimal.Comment: 27 pages, 9 figures, Experimental Astronomy; v2: accepted versio
Analysis of stellar spectra with 3D and NLTE models
Models of radiation transport in stellar atmospheres are the hinge of modern
astrophysics. Our knowledge of stars, stellar populations, and galaxies is only
as good as the theoretical models, which are used for the interpretation of
their observed spectra, photometric magnitudes, and spectral energy
distributions. I describe recent advances in the field of stellar atmosphere
modelling for late-type stars. Various aspects of radiation transport with 1D
hydrostatic, LTE, NLTE, and 3D radiative-hydrodynamical models are briefly
reviewed.Comment: 21 pages, accepted for publication as a chapter in "Determination of
Atmospheric Parameters of B, A, F and G Type Stars", Springer (2014), eds. E.
Niemczura, B. Smalley, W. Pyc
Inherited biotic protection in a Neotropical pioneer plant
Chelonanthus alatus is a bat-pollinated, pioneer Gentianaceae that clusters in patches where still-standing, dried-out stems are interspersed among live individuals. Flowers bear circum-floral nectaries (CFNs) that are attractive to ants, and seed dispersal is both barochorous and anemochorous. Although, in this study, live individuals never sheltered ant colonies, dried-out hollow stems - that can remain standing for 2 years - did. Workers from species nesting in dried-out stems as well as from ground-nesting species exploited the CFNs of live C. alatus individuals in the same patches during the daytime, but were absent at night (when bat pollination occurs) on 60.5% of the plants. By visiting the CFNs, the ants indirectly protect the flowers - but not the plant foliage - from herbivorous insects. We show that this protection is provided mostly by species nesting in dried-out stems, predominantly Pseudomyrmex gracilis. That dried-out stems remain standing for years and are regularly replaced results in an opportunistic, but stable association where colonies are sheltered by one generation of dead C. alatus while the live individuals nearby, belonging to the next generation, provide them with nectar; in turn, the ants protect their flowers from herbivores. We suggest that the investment in wood by C. alatus individuals permitting stillstanding, dried-out stems to shelter ant colonies constitutes an extended phenotype because foraging workers protect the flowers of live individuals in the same patch. Also, through this process these dried-out stems indirectly favor the reproduction (and so the fitness) of the next generation including both their own offspring and that of their siblings, alladding up to a potential case of inclusive fitness in plants
Simulation-based analysis of micro-robots swimming at the center and near the wall of circular mini-channels
Swimming micro robots have great potential in biomedical applications such as targeted drug delivery, medical diagnosis, and destroying blood clots in arteries. Inspired by swimming micro organisms, micro robots can move in biofluids with helical tails attached to their bodies. In order to design and navigate micro robots, hydrodynamic characteristics of the flow field must be understood well. This work presents computational fluid dynamics (CFD) modeling and analysis of the flow due to the motion of micro robots that consist of magnetic heads and helical tails inside fluid-filled channels akin to bodily conduits; special emphasis is on the effects of the radial position of the robot. Time-averaged velocities, forces, torques, and efficiency of the micro robots placed in the channels are analyzed as functions of rotation frequency, helical pitch (wavelength) and helical radius (amplitude) of the tail. Results indicate that robots move faster and more efficiently near the wall than at the center of the channel. Forces acting on micro robots are asymmetrical due to the chirality of the robot’s tail and its motion. Moreover, robots placed near the wall have a different flow pattern around the head when compared to in-center and unbounded swimmers. According to simulation results, time-averaged for-ward velocity of the robot agrees well with the experimental values measured previously for a robot with almost the same dimensions
Regulation of the Mitogen Activated Protein Kinase Kinase (MEK)-1 by NAD-Dependent Deacetylases
Sirtuins are class III deacetylases that regulate many essential processes, including cellular stress, genome stability, and metabolism. Although these NAD+-dependent deacetylases control adaptive cellular responses, identification of sirtuin-regulated signaling targets remain under-studied. Here, we demonstrate that acetylation of the mitogen-activated protein kinase kinase-1 (MEK1) stimulates its kinase activity, and that acetylated MEK1 is under the regulatory control of the sirtuin family members SIRT1 and SIRT2. Treatment of cells with sirtuin inhibitors, or siRNA knockdown of SIRT1 or SIRT2 proteins, increases MEK1 acetylation and subsequent phosphorylation of the extracellular signal-regulated kinase (ERK). Generation of an acetyl-specific MEK1 antibody demonstrates that endogenous acetylated MEK1 is extensively enriched in the nucleus following epidermal growth factor (EGF) stimulation. An acetyl-mimic of MEK1 increases inappropriate growth properties, suggesting that acetylation of MEK1 has oncogenic potential
- …
