37 research outputs found

    Join forces or cheat: evolutionary analysis of a consumer-resource system

    Get PDF
    International audienceIn this contribution we consider a seasonal consumer-resource system and focus on the evolution of consumer behavior. It is assumed that consumer and resource individuals live and interact during seasons of fixed lengths separated by winter periods. All individuals die at the end of the season and the size of the next generation is determined by the the consumer-resource interaction which took place during the season. Resource individuals are assumed to reproduce at a constant rate, while consumers have to trade-off between foraging for resources, which increases their reproductive abilities, or reproducing. Firstly, we assume that consumers cooperate in such a way that they maximize each consumer's individual fitness. Secondly, we consider the case where such a population is challenged by selfish mutants who do not cooperate. Finally we study the system dynamics over many seasons and show that mutants eventually replace the original cooperating population, but are finally as vulnerable as the initial cooperating consumers

    A review of wildland fire spread modelling, 1990-present 3: Mathematical analogues and simulation models

    Full text link
    In recent years, advances in computational power and spatial data analysis (GIS, remote sensing, etc) have led to an increase in attempts to model the spread and behvaiour of wildland fires across the landscape. This series of review papers endeavours to critically and comprehensively review all types of surface fire spread models developed since 1990. This paper reviews models of a simulation or mathematical analogue nature. Most simulation models are implementations of existing empirical or quasi-empirical models and their primary function is to convert these generally one dimensional models to two dimensions and then propagate a fire perimeter across a modelled landscape. Mathematical analogue models are those that are based on some mathematical conceit (rather than a physical representation of fire spread) that coincidentally simulates the spread of fire. Other papers in the series review models of an physical or quasi-physical nature and empirical or quasi-empirical nature. Many models are extensions or refinements of models developed before 1990. Where this is the case, these models are also discussed but much less comprehensively.Comment: 20 pages + 9 pages references + 1 page figures. Submitted to the International Journal of Wildland Fir

    Evolutionary Substitution and Replacement in N-Species Lotka-Volterra Systems

    Get PDF
    The successful invasion of a multi-species resident system by mutants has received a great deal of attention in theoretical ecology but less is known about what happens after the successful invasion. Here, in the framework of Lotka-Volterra (LV) systems, we consider the general question where there is one resident phenotype in each species and the evolutionary outcome after invasion remains one phenotype in each species but these include all the mutant phenotypes. In the first case, called evolutionary substitution, a mutant appears in only one species, the resident phenotype in this species dies out and the mutant coexists with the original phenotypes of the other species. In the second case, called evolutionary replacement, a mutant appears in each species, all resident phenotypes die out and the evolutionary outcome is coexistence among all the mutant phenotypes. For general LV systems, we show that dominance of the resident phenotype by the mutant (i.e. the mutant is always more fit) in each species where the mutant appears leads to evolutionary substitution/replacement. However, it is shown by example that, when dominance is weakened to only assuming the average fitness of the mutants is greater than the average for the resident phenotype, the residents may not die out. We also show evolutionary substitution occurs in two-species competitive LV systems when the initial invasion of the resident system (respectively, of the new coexistence system) is successful (respectively, unsuccessful). Moreover, if sequential evolutionary substitution occurs for either order that the two mutant phenotypes appear (called historically independent replacement), then it is shown evolutionar

    Branching Scenarios in Eco-evolutionary Prey-Predator Models

    No full text
    corecore