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Abstract

The hematopoietic stem cell (HSC) system is a demand control system, with the demand coming from the organism,
since the products of the common myeloid and lymphoid progenitor (CMP, CLP respectively) cells are essential for
activity and defense against disease. We show how ideas from population biology (combining population dynamics
and evolutionary considerations) can illuminate the feedback control of the HSC system by the fully differentiated
products, which has recently been verified experimentally. We develop models for the penultimate differentiation of
HSC Multipotent Progenitors (MPPs) into CLP and CMP and introduce two concepts from population biology into
stem cell biology. The first concept is the Multipotent Progenitor Commitment Response (MPCR) which is the
probability that a multipotent progenitor cell follows a CLP route rather than a CMP route. The second concept is the
link between the MPCR and a measure of Darwinian fitness associated with organismal performance and the levels of
differentiated lymphoid and myeloid cells. We show that many MPCRs are consistent with homeostasis, but that they
will lead to different dynamics of cells and signals following a wound or injury and thus have different consequences
for Darwinian fitness. We show how coupling considerations of life history to dynamics of the HSC system and its
products allows one to compute the selective pressures on cellular processes. We discuss ways that this framework
can be used and extended.

Keywords: Hematopoieitic stem cell, Multipotent progenitor, Common lymphoid progenitor, Common myeloid
progenitor, Darwinian fitness, Natural selection, Population dynamics

Introduction
Hematopoiesis (the formation of blood components) is a
highly orchestrated and dynamical process. Hematopoi-
etic Stem Cells (HSCs) give rise, through a large array
of successively differentiated progeny, to mature blood
cells. While progress has been made in understanding the
HSC system, particularly at the molecular level [1,2], Tan
et al. (pg 82-83) [3] concluded a recent review on HSCs by
identifying critical unanswered questions: 1) Is it possible
to manipulate adult stem cells to increase their ability to
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proliferate in vitro while maintaining stem cell qualities,
so that adult stem cells can be used as a sufficient source
of tissue for transplants and other therapeutic strategies?
2) What are the intrinsic and extrinsic controls that keep
stem cells from differentiating or that direct them along
a particular differentiation pathway to form one special-
ized cell type rather than another? 3) What are the factors
responsible for stem cell responses to injury or damage
that enable rapid activity and appropriate contribution
to tissue repair and regeneration? 4) Can the ‘stress’ sig-
nals’ that command facultative stem cells to respond to
tissue damage and gain specific regenerative quality be
harnessed for therapeutic value?
We will show that these questions can only be fully

answered if one considers the connection between the
needs of the organism and the HSC system, a demand

© 2013 Mangel and Bonsall; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Mangel and Bonsall Theoretical Biology andMedical Modelling 2013, 10:5 Page 2 of 14
http://www.tbiomed.com/content/10/1/5

control system [4] in which the demand comes from the
organism via signals to the HSC system. As noted by
Metcalf [4] in his classic lectures, appropriate long-term
behavior of the HSC system is essential for the health of
the organism. Furthermore, HSCs are required to pro-
duce the required differentiated cells without depleting
the stem cell pool or creating damaged stem cells that lead
to cancer. Even in the absence of oxidative damage due to
ischemia/reperfusion, blood loss, or infections damage to
blood cells and tissues caused by reactive oxygen species
is a common process leading to cell apoptosis, and mature
blood cells have a steady rate of turnover and are thus
constantly replaced [5].
Thus, organismal performance is intimately connected

toHSCs and their products [6-9]. Themyeloid products of
the HSC system are particularly important for antipreda-
tor and foraging behaviors and general immune response
and the lymphoid products of the HSC system are essen-
tial for specific immune response and neonatal survival.
Recent whole organismmanipulations have demonstrated
the veracity of this proposition (see [10] for myeloid cells;
[11] for lymphoid cells). At the same time, when the
organism is in a steady state (homeostasis) the HSC sys-
tem and its products are relatively stable [12]. In addition,
the demand is not unlimited; for example, it has been
known for a very long time that organismal performance
is a peaked function of hematocrit (e.g., [6,9,13]).
In this paper, we show that the questions raised by

Tan et al. [3] are answered most effectively if one takes
an approach to stem cell biology based on popula-
tion biology, which involves combining the dynamics of
cells with considerations of fitness and natural selection
[14]. We develop a theoretical framework that comple-
ments existing models (Additional file 1: Table S1) to
explore the dynamics of the HSC system. Elsewhere ([15];
Figure 1 here) we have developed stochastic and deter-
ministic models of HSC cells and their associated prod-
ucts and applied evolutionary invasion analysis [16] and
state dependent life history theory [17-20] to show that
understanding the dynamics of HSCs and their products
requires asking more than whether a stem cell renews,
symmetrically differentiates, or asymmetrically differen-
tiates. Understanding the roles of positive and negative
feedback is essential for predicting stem cell dynamics. By
linking these feedback processes to stochastic population
models (which allow uncertainties inherent in the system
to be accounted for) we showed how well the overall mean
dynamics of the system can be approximated a system
of ordinary differential equations. We build on this work
here and introduce additional concepts associated with
population biology to the biology of stem cells, with the
focus on the HSC system. We introduce the Multipotent
Progenitor Commitment Response (MPCR) that charac-
terizes the penultimate differentiation of a multipotent

progenitor (MPP) to a Common Lymphoid Progeni-
tor (CLP) or a Common Myeloid Progenitor (CMP),
i.e. whether they follow a myeloid or lymphoid track.
Although we recognize that within themyeloid track there
is another decision towards a granulocyte-macrophage
progenitor or megakaryocyte-erythrocyte progenitor (see
Additional file 1). We show how the fitness (survival and
reproduction) of the organism shapes the MPCR, thus
providing an approach for modeling the demand control
nature of the HSC system.

Methods
We begin first by describing, in summary here, with
details in Additional file 1, the dynamics of the stem cells
and their descendants, after which we describe the com-
ponents of fitness (survival and the reproduction) and
their dynamics. We then couple the two together.

Dynamics of stem cells and their descendants
In the Additional file 1, we derive the computational
model given below and in Figure 1 we provide a graphical
representation of the full mathematical model. We thus
consider stem cells, with concentration denoted by [ S],
Multipotent Progenitor cells, denoted by [MPP], Com-
mon Lymphoid Progenitors, denoted by [CLP], Common
Myeloid Progenitors, denoted by [CMP], fully differenti-
ated lymphoid cells, denoted by [ L] (measured in num-
bers per milliliter), and fully differentiated myeloid cells,
denoted by [M] (measured in numbers per nanoliter).
Central to these dynamics we assume that the stem cell
niche can support at mostK stem cells and that in absence
of all other feedback (described below), the dynamics in
the niche follow Gompertzian kinetics (justified in [15]).
The dynamics are described by the following set of

coupled ordinary differential equation:
d[ S]
dt

= [ S] ·log(K/[ S] )(rs − rp′�p′([ L] , [M] ))

× �s([ L] , [M] ) − μs[ S] (1)
d[MPP]

dt
= [ S] ·log(K/[ S] )(rs + 2rp′�p′([ L] , [M] )) (2)

× �s([ L] , [M] ) + (λ − rd,MPP)�p([ L] , [M] )
×[MPP]−μp[MPP]

d[CLP]
dt

= rd,MPP�p(L,M)ρ([ L] , [M] )�N[MPP]

− rCLP[CLP]−μCLP[CLP] (3)
d[CMP]

dt
= rd,MPP�p(L,M)(1 − ρ([ L] , [M)] )�N[MPP]

− rCMP[CMP]−μCMP[CMP] (4)
d[ L]
dt

= rCLP[CLP]+(rl − μl − μl∗IV (t)>vth)[ L] (5)

d[M]
dt

= rCMP[CMP]+(rm − μm)[M] . (6)
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Figure 1 A diagrammatic derivation of Eqns 1 to 6 (details given in Additional file 1). a) In the most general case, we consider stem cells (S), a
series of Multipotent Progenitor Cells (MPP), a Common Lymphoid Progenitor (CLP) and a Common Myeloid Progenitor (CMP). CLPs give rise to B,
NK, and T cells; CMPs give rise to Erythrocytes (E), Granulocytes (G), and Platelets (P). We denote the total numbers of lymphoid and myeloid cells by
L and M respectively, rates of differentiation by r· (with subscript indicating the cell type involved), rates of development of MPP cells by λ· , feedback
from fully differentiated cells on those rates by �· , and rates of cell death by μ· . The feedback functions have the property that they are 1 when
stem cell or fully differentiated cell numbers are low and decline as stem cells or fully differentiated cells increase. Thus, for example, stem cells
renew (one stem cell becomes two) at rate rs�s(l,m) when the concentrations of lymphoid and myeloid cells are l andm respectively,
asymmetrically differentiate (one stem cell becomes two stage-0 progenitors) at rate 2rp′�p′ (l,m)�s(l,m), symmetrically differentiate (one stem cell
becomes a stem cell and a stage-0 progenitor) at rate rp�s(l,m), and die at rate μs. Similar interpretations hold for other transitions. The Multipotent
Commitment Response (MPCR), denoted by ρ(l,m), is the probability that a MPP in its final stage commits to the lymphoid route. b) To focus on the
MPCR, we combine all of the fully differentiated cells into lymphoid and myeloid classes (L and M) and use Michaelis-Menten-like arguments to
compress the MPP class into a single stage, assuming that steady states of intermediate stages are rapidly reached, characterized by combination of
rate constants�N .

where �s([ L] , [M] ), �p′([ L] , [M] ) and �p([ L] , [M] )
are feedback functions (see below) for the activity of stem
cells (s), the asymmetric differentiation of stem cells (p′),
and the activity of MPP cells (p), respectively. ρ([ L] , [M] )
is the demand control function (see below) that describes
the probability of an MPP cell differentiating into a lym-
phoid or myeloid progenitor. �N [MPP] is the survival
of MPP cells from initial differentiation through to ulti-
mate differentiation into CLP or CMP cells (see Additional
file 1 for its full derivation). μl∗ characterizes the addi-
tional mortality when the immune system is activated
and Ia>b is an indicator function that is 1 if a > b
and 0 otherwise. All other parameters are defined in
Table 1.
Feedback control, which requires nonlinear dynamics,

is essential for the growth and regeneration of tissues.
A recent model of genetic products [21] to character-
ize the erythroid-myeloid lineage decision, shows how
nonlinearities arise. de Graaf et al. [22] showed that the

platelet concentration can regulate HSCs, through the
concentration of Thrombopoietin (TPO). Other authors
have shown that Lkb1, a kinase enzyme best known as
a tumor suppressor, provides feedback control of HSCs
[23-26]. Such work provides the empirical basis for our
modeling.
To incorporate feedbacks we extend Lander et al.’s [27]

approach: if r denotes a generic reaction rate constant
and [χ ] the concentration of fully differentiated cells, they
model the reaction rate with feedback control is r

1+ν[χ] .
We have adapted this framework for the HSC system, with
changes. First, two kinds of differentiated cells provide
feedback; we use l andm to denote the total concentration
of lymphoid and myeloid cells. Second, there is poten-
tially different feedback on the activity of stem cells, the
asymmetric differentiation of stem cells, and the activity of
MPP cells. Third, the system needs to be active when there
is a shortage of either lymphoid or myeloid cells. Thus
we set:
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Table 1 Variables, parameters, their interpretation, and values

Symbol Interpretation Value

t Non-dimensional time 1-3500

[ S] Concentration of stem cells at time t Eqn 1

[MPP] Concentration of Multipotent Progenitor (MPP) cells at time t Eqn 2

[ CLP] Concentration of Common Lymphoid Progenitor (CLP) cells at time t Eqn 3

[ CMP] Concentration of Common Myeloid Progenitor (CMP) cells at time t Eqn 4

[ L] Concentration of fully differentiated Lymphoid (L) cells at time t Eqn 5

[M] Concentration of fully differentiated Myeloid (M) cells at time t Eqn 6

K Maximum number of stem cells in a niche 10

rs Maximum rate of stem cell self-renewal 2.5

rp′ Maximum rate of stem cell asymmetrical division 0.001

�′
p([ L] , [M] ) Feedback control from fully differentiated cells to asymmetric division Eqn 9

�s([ L] , [M] ) Feedback control from fully differentiated cells to stem cell self-reneval Eqn 7

�p([ L] , [M] ) Feedback control from fully differentiated cells to symmetric division Eqn 8

μs Rate of stem cell death 0.004

λ Rate of MPP multiplication 0.25

μp Rate of MPP cell death 0.02

�N Combination of intermediate multipotent progenitor rate constants 1.0

rCLP Rate of division of CLP into fully differentiated lymphoid cells 0.01

μCLP Rate of CLP cell death 0.001

rl Rate of multiplication of lymphoid cells 0.025

μl Rate of lymphoid cell death when immune system is not activated 0.028

μl∗ Additional rate of lymphoid cell death when immune system is activated 0.01

Ia>b Indicator function for the inequality =1 if a > b, 0 otherwise

vth Threshold concentration for pathogens to activate the immune system 0.025

rCMP Rate of division of CMP into fully differentiated myeloid cells 0.01

μCMP Rate of CMP cell death 0.001

rm Rate of multiplication of myeloid cells 0.0

μm Rate of myeloid cell death 0.01

l Value of [L] varies

m Value of [M] varies

φsl(l) Feedback control of fully differentiated lymphoid cells on stem cell activity Eqn 10

φsm(m) Feedback control of fully differentiated myeloid cells on stem cell activity Similar to Eqn 10

φpl(l) Feedback control of fully differentiated lymphoid cells on symmetric renewal Eqn 11

φpm(m) Feedback control of fully differentiated myeloid cells on symmetric renewal Similar to Eqn 10

φp′ l(l) Feedback control of fully differentiated lymphoid cells on asymmetric renewal Eqn 11

φp′m(m) Feedback control of fully differentiated myeloid cells on asymmetric renewal Similar to Eqn 10

αsl Feedback parameter in φsl(l) 10

αpl Feedback parameter in φpl(l) 100

αp′ l Feedback parameter in φp′ l(l) 20

αsm Feedback parameter in φsm(m) 0.1

αpm Feedback parameter in φpm(m) 0.001

αp′m Feedback parameter in φp′m(m) 0.2

α Coefficient in MPP Commitment Response (MPCR) Varies



Mangel and Bonsall Theoretical Biology andMedical Modelling 2013, 10:5 Page 5 of 14
http://www.tbiomed.com/content/10/1/5

Table 1 Variables, parameters, their interpretation, and values (Continued)

Symbol Interpretation Value

γ Exponent in MPCR Varies

κl Density of lymphoid cells in homeostasis 30

κm Density of myeloid cells in homeostasis 30,000

ρh Fraction of lymphoid cells in homeostasis Eqn 15

�f ([M] Rate of accumulation of fitness when myeloid cell concentration is [M] Eqn 17

F(t) Fitness accumulated to time t Eqn 18

ε Ratio of organismal to cellular time scale 0.05

S(t) Survival to time t Eqn 21

μe([M] ) Total rate of mortality when myeloid cell concentration is [M] Eqn 20

μe0 Myeloid independent rate of mortality 0.05

μe1 Myeloid dependent rate of mortality 5.0

μi([ V] ) Additional rate of mortality when concentration of infectious agents is [ V] Eqn 20

μi0 Coefficient of [ V] in additional mortality 0.02

μi1 Coefficient of [ V]2 in additional mortality 0.002

rv Replication rate of infectious agents 0.05

cl Clearance rate of infectious agents by lymphoid cells 0.05

cm Clearance rate of infectious agents by myeloid cells 0

v0 Concentration of infectious agents at the start of an infection 1

vth Concentration of infectious agents below which additional lymphoid mortality does not occur 0.025

(Parameter values are a canoncial fixed set, arbitrarily chosen, to illustrate the general principles of an MPCR).

�s(l,m) = max[ φsl(l), φsm(m)] (7)

�p(l,m) = max[ φpl(l), φpm(m)] (8)

�p′(l,m) = max[ φp′l(l), φp′m(m)] (9)

where φsl(0) = φsm(0) = 1 (representing the feedback of
lymphoid and myeloid cells on stem cell activity), etc, and
all φij are decreasing functions of their arguments, as in

φsl(l) = 1
1 + αsl · l (10)

φpl(l) = 1
1 + αpl · l (11)

φp′l(l) = 1
1 + αp′l · l (12)

where αsl, αpl, αp′l are parameters. A similar form is used
for the feedback control from myeloid cells. This is the
simplest form of feedback between the whole organism
and the bone marrow stem cell system; see [28] for alter-
natives.
In a demand control system the probability of a MPP

cell ultimately differentiating into a CLP or CMP cell must
depend upon the state of the organism. That is, the cur-
rent densities of myeloid and lymphoid cells determine
the appropriate response. We choose a functional form

that is widely used in population biology and similar to
Michaelis-Menten enzyme kinetics;

ρ(l,m) = α
(m
l
)γ

1 + α
(m
l
)γ (13)

where ρ(l,m) represents the demand control function and
α and γ are parameters that describe this specific asymp-
totic Michaelis-Menten function. We let κm : κl denote
the ratio of myeloid to lymphoid cells in homoeostasis.
If ρh denotes the value of ρ(l,m) in homeostasis then on
average we have:

ρh = κl
κl + κm

(14)

and from Eqn 13 we have

ρh = α(κm/κl)
γ

1 + α(κm/κl)γ
. (15)

We view the unknowns in this equation as the two param-
eters α and γ from which we find

α =
(

ρh
1 − ρh

)
(κm/κl)

−γ . (16)

Eqn 16 determines a curve in the γ -α plane and every
value on this curve provides the same value of ρ(l,m) =
ρh. However, when out of homeostasis, the value of α(γ )

that determines Eqn 16 has a profound effect on the
fate of HSC descendants. In Figure 2a we show the rela-
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tionship between the parameters α and γ of the MPP
commitment response when homeostasis corresponds to
1 lymphoid cell per 1000 myeloid cells, a typical ratio for
humans. Each point on the lines in these panels corre-
spond to a particular value of the pair (γ , α) consistent
with the number of cells at homeostasis. In Figure 2b,
we show how ρ(l,m) varies as m/l varies for three val-
ues of γ . As γ increases, the MPP commitment response
becomes more sensitive to variation in the densities of
myeloid and lymphoid cells. These three curves represent
just a few possibilities in the infinite space of functional
responses corresponding to Eqn 13 and raises the ques-
tion: how can we predict which response an organism will
use (i.e., where on the curve in Figure 2a will a population
of organisms sit)? We discuss this below.
How an organism goes out of homeostasis depends

upon its environment. For example, in an environment
when wounds occur frequently, we anticipate them/l will
be lower than the value in homeostasis while in an envi-
ronment when infection occurs frequently we anticipate
thatm/l will be greater than that value in homeostasis.
In this paper, we are interested in ρ(l,m), and in partic-

ular how natural selection affects it, in light of the envi-
ronment of the organism. To do this, we need to couple
Eqns 1-13 to organismal fitness, which is what separates
our work from all that has come before it. We consider it
advisable to step back from modeling a particular situa-
tion, but instead consider the more general properties that
connect the needs of the organism with the activity of the
bone marrow stem cell system.

The components of fitness and their dynamics
The representation of genes in subsequent generations is
determined by survival and successful reproduction of the

focal organism. Regarding the latter, we assume that the
rate at which successful reproduction occurs (�f ([M] ))
is a function of myeloid cells, justified by the long recogni-
tion that organismal performance is a peaked function of
hematocrit. Following figure two in [9], we set

�f ([M] ) = a0 + a1 · M + a2 · M2 (17)

provided this expression is positive; otherwise we set
�f ([M] ) = 0, where a0 = −1.034565, a1 = 0.001527,
and a2 = −0.0000002864. The peak of �f ([M] ) occurs
at [M]∗ = 2666 (Figure 3). Hematocrit is the fraction of
myeloid cells in blood; if too great then fitness is impaired
as an organism has few lymphoid (immune) cells. If too
low then there are insufficient myeloid cells to support
the oxygen needs of the organism. Physiologically, the
parabolic hematocrit function emerges through the rela-
tionship between the oxygen carrying capacity of blood
and blood flow. When myeloid cells are low (M → 0),
blood flow is maximal but oxygen concentration is low. In
contrast asM → ∞, oxygen concentration is maximal but
blood is too viscous to flow. Hence, this proximate phys-
iological explanation and consequently the ultimate evo-
lutionary fitnees cost lead to a peaked (parabolic) hemat-
ocrit function. The numerical relationship between repro-
ductive rate and myeloid cell concentration described in
equation (17) captures this parabolic shape.
We let F(t) denote lifetime fitness accumulated to time

t, S(t) denote survival to time t, and ε << 1 a scaling
parameter that relates the organismal and cellular time
scales. Then

dF
dt

= ε · S(t) · �f ([M(t)] ) (18)
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Figure 2 a) The relationship between the parameters α and γ of the stem cell commitment response when homeostasis corresponds to 1
lymphoid cell per 1000myeloid cells. b) Different values of γ affect how the MPCR varies with changes in the number of lymphoid and myeloid
cells. In the presence of high numbers of myeloid cells, the demand response is to drive the MPPs to make more lymphoid cells.
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Figure 3We assume that the rate at which successful reproduction accumulates,�f (m) is a parabolic function of the density of myeloid
cellsm.

To determine survival, we assume that uninfected indi-
viduals have a per unit time rate ofmortality withmyeloid-
independent and myeloid-dependent components so that
the total rate of mortality is (Figure 4)

μe([M] ) = μe0 + μe1
[M]

(19)

Although we focus on non-fatal diseases here, such dis-
eases can still increase mortality rate, e.g. by reducing
the effectiveness of flight responses. Hence we assume
that the additional mortality induced by the pathogen
is

μi([V ] ) = μi0[V ]+μi1[V ]2 (20)

so that

dS
dt

= −ε · (μe([M] ) + μi[V ] )S (21)

Finally, we incorporate the dynamics of infectious
agents. We assume that in the absence of immune
response the growth of the infectious agent is exponential
with rate rv and that lymphoid and myeloid cells clear the
infection at rate cl and cm respectively. In this model, again

for simplicity, we ignore memory in the immune system.
Thus, if V (t) denotes the density of pathogens

dV
dt

= [ rv − clL(t) − cmM(t)] ·V (t) (22)

Integration of Eqns 17-22 forward in time, conditioned
on ρ([ L] , [M] ) and a sequence of wound and/or infec-
tion events, allows us to compute the lifetime reproductive
success associated with that particular MPP commitment
response.
Eqns 1-22 are a set of deterministic ordinary differ-

ential equations that link the behavior of the stem cell
system with the needs of the organism. However, organ-
isms in nature experience wounding and infection in a
quasi-random manner. We account for this in the follow-
ing way. Imagine that there are Kw and Ki times at which
wounds or infections can occur (these values could, of
course, be random variables but we treat them as fixed in
this paper, only for purposes of simplicity) and then deter-
mine a sequence of times Tw(kw), kw = 1, 2, ....,Kw and
Ti(ki), ki = 1, 2, ....,Ki at which either a wound or infec-
tion occurs (in principle both could occur at one time). To
illustrate the ideas, we assume that when a wound occurs,
myeloid cells drop by 40% and that when an infection
occurs, the infectious agent increases to the level v0. These
occur instantaneously and we then continue with the solu-
tion of the differential equations. For the results shown
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Figure 4We assume that the rate of mortality declines with increasing numbers of myeloid cells, which has the effect that annual
survival increases with increasing densities of myeloid cells; here we artificially hold the myeloid cells constant.

here, we assume that Kw = Ki = 7 and that the times are
uniformly distributed over the interval between day 0 and
day 1500.

Results
As introduced above (Figure 2a) a homeostatic ρh ratio
of fully differentiated myeloid to lymphoid cells specifies
a curve in the γ − α plane in which all points on this
curve are consistent with ρh but as illustrated in Figure 2b,
different values of γ (and thus α) will lead to different
MPP commitment responses when the organism is out of
homeostasis. Thus, to understand how natural selection
will act on ρ(l,m) requires dealing explicitly with compo-
nents of fitness and linking them to the dynamics of the
HSC system.
To explore this hypothesis, we assume that the rate

at which the organism accumulates fitness, �f (m) is a
parabolic function of myeloid cells (Figure 3) and that the
rate of mortality is a declining function of myeloid cells
(Figure 4) and an increasing function of the density of
infectious agents (Eqn 22).
In a ‘deterministic’ or laboratory environment with nei-

ther wounding nor infection, organisms still die, so that
survival declines with age (Figure 5a) and fitness accu-
mulates but ultimately saturates because of the declining
survival (Figure 5b). The strength of selection on ρ(l,m)

will depend upon how fitness varies with γ . We show this
in Figure 6 fitness as a function of γ for the determin-
istic case, wounding only, infections only, and wounding
and infections. Clearly there is little selection on γ in the
laboratory case or of wounding only. Selection does occur
when there are infections, with larger values of γ , leading
to a more responsive MPCR.
The alternative to varying γ and holding the environ-

ment at one stochastic realization is to hold γ constant
and consider multiple realizations of the stochastic envi-
ronment. We show the results of such an approach in
Figure 7, for γ = 2. Using these, we can compute both a
mean and variance for the selection acting on γ .

Discussion
Here we have developed and analysed a theoretical frame-
work for linking the population biology of the hematopoi-
etic stem cells to the demands of the individual. We have
introduced the notion of the MPCR (Multipotent Pro-
genitor Commitment Response) as the response that the
describes the penultimate decision of stem cells before
commitment to either a myeloid or lymphoid lineage. We
use this response to investigate the control dynamics of
a hematopoietic stem cell system and show that different
values of the ‘shape’ parameters that describe the MPCR
give a range of optimal response. Below we discuss the
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Figure 5 Even in a laboratory environment, without wounding or infection, organism do not live forever, so that survival declines with
age (panel a) with the consequence that accumulated fitness saturates.

implications of this on the evolutionary dynamics of the
HSC system and, more broadly, for developing a theory of
stem cell systems based in population biology.

The meaning of a flat fitness surface
The first derivative, ∂F

∂γ
, of the accumulated fitness with

respect to γ is a fundamental measure of the strength of

natural selection on γ . As the derivative becomes smaller,
the strength of natural selection becomes weaker, with
the implication that a wider spectrum of values of γ will
provide equal values of fitness. But, as we have shown
in Figure 2b, differing values of γ will lead to consid-
erably different MPCRs, and thus kinetics of the HSC
descendants following an external challenge such as a
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Figure 7 Ten realizations of the model with both wounds and infection, for the case of γ = 2.

transplant or perturbation, with the prediction that if one
uses animals with little evolutionary history of wounding
or infection, a wide range of HSC dynamical responses
is expected. For instance, among 44 laboratory mice,
Abkowitz et al. [29] observed seven different patterns of
donor cell dynamics following hematopoeitic stem cell
transplant experiments, suggesting that there is individ-
ual heterogeneity in the parameters of the MPCR, as we
would predict.
In previous work [15] we showed that the differen-

tial equations used here are a good approximation for
the mean of underlying stochastic system. Understand-
ing the limitations imposed by stochastic fluctuations on
the feedback in our model [30] is an important next
step because the comparisons of models and data will
require a framework to account for process stochasticity
and observation error. Developing appropriate state-space
approaches to understand the consequences of these het-
erogeneities and nonlinearities on stem cell dynamics is
clear and obvious future step.
Recently, Huang [31] proposed that a systems biology

of stem cells should consider not only the link between
observation and process through state-space approaches
(e.g. [32]) but also the consequences of nonlinearity and
non-genetic heterogeneity in cell systems. Here, to start
to understand how nonlinearity effects influence stem cell
behavior we have introduced the notion of a MPCR under

the control from the needs of the organism. Furthermore,
under a paradigm of stem cell heterogeneity, we should
anticipate variation at multiple levels within any stem cell
system; particularly so with individual variation in the
MPCR (γ and α).

How this model can be extended
There are a number of extensions that go beyond the
current work for linking population biology and stem
cell systems. For instance, experimental validation of the
MPCR would require repeated cell count measures of
long-term HSCs, short-term HSCs and a range of HSC-
derived products. Given such experimental data we envis-
age that it would be possible to assess goodness of fit
between an MPCR model and data (and also character-
ize unexplained heterogeneties) using computational and
statistical methods (Bonsall and Mangel, unpublished).
Furthermore, our framework could be extended to study

the consequences of transplant or perturbation effects A
perturbation experiment can be modeled by starting the
HSC system in its steady state and then reducing the num-
ber of lymphoid or myeloid cells and then integrating
Eqns 1-22 forward. In addition to predicting the kinetics
of fully differentiated cells, we can predict the activity of
the stem cells following the perturbation. As described in
the Additional file 1, a transplant experiment involves the
addition of the dynamics of host cells, which are dying,
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and allows us to predict the fraction of fully developed
lymphoid or myeloid cells. Our approach can also be used,
in conjunction with evolutionary invasion analysis as in
[15], to predict the outcome of a partial transplant of stem
cells, in which stem cells with different kinetic properties
are transplanted into an organism with a healthy but not
vibrant stem cell system and for which we wish to pre-
dict whether the transplanted stem cells will co-exist with
the host stem cells, overtake them, or be extinguished by
them.

Computing ρ(l,m) frommore fundamental principles: the
fitness control hypothesis

We began with the assumption that ρ(l,m) = α
(m
l
)γ

1+α
(m

l
)γ ,

but there are an infinite number of functions that would
have the properties we seek: bounded by 1 and increasing
as the the ratio m/l increases. Given experimental data, it
is possible to use Bayesian methods to determine ρ(l,m)

(Bonsall and Mangel, unpublished), but we may also ask
if ρ(l,m) could be constructed from some more funda-
mental principles. One way to do approach this woul be
through state dependent life history, as implemented by
stochastic dynamic programming (SDP) [17-20], which
we explain now but leave the details for a subsequent
paper.
Our results point to organismal fitness being a func-

tion of fully differentiated lymphoid and myeloid cells,
F(l,m, t), which we have modeled (Eqns 17-22). Begin-
ning there, consider the question from the perspective
of the organism, rather than from the perspective of the
dynamics of cells. Suppose that s denotes the time scale
for the organism, so that in the interval s to s + 1 the
time �t >> 1 elapses in the cellular model. During that
elapsed time, we assume that up to P fully differentiated
cells are produced and the challenge for the organism is
to allocate these fully differentiated cells to lymphoid or
myeloid cells. That is, if δl and δm denote the number of
fully differentiated cells produced during �t, subject to
δl+δm ≤ P , then we seek the value ofP and combination
of δl and δm that maximizes organismal fitness.
To do this, we let F(l,m, s) denote the accumulated life-

time reproduction from time s until time S given that
[ L(s)]= l, [M(s)]= m and the organism is not infected.
Similarly, we let Fi(l,m, v, s) denote accumulated life-
time reproduction under the same conditions about lym-
phoid and myeloid cells and that the density of infectious
agents is [V (s)]= v. Since fitness cannot be accumu-
lated after time S, we have the end condition F(l,m, S) =
Fi(l,m, v, S) = 0. Methods of SDP, along with value iter-
ation, allow us to compute the stationary values of these
functions for s << S [15].
Such a method allows us to represent the optimal pro-

duction of CLP and CMP cells given that the organism is

not infected at time s and that [ L(s)]= l and M[ s]= m.
Then

P∗
′ (l,m, s) = δ0l∗(l,m, s) + δ0m∗(l,m, s) (23)

is the optimal production of MPP cells at time s, given
the current state of the organism. Similar arguments gen-
erate the optimal production of MPP cells, distributed as
CLP or CMP for the case of the organism being infected at
time s.
In the stationary state, fitness is only a function of l,m

and v; we denote these values by F(l,m) and Fi(l,m).
Similarly, the analog of the quantities in Eqn 23 are
δ0l∗(l,m), δ0m∗(l,m) and P∗

(l,m). Thus, for an organ-
ism that is currently not infected, the fraction of CLP cells
produced is

ρ(l,m) = δ0l∗(l,m)

δ0l∗(l,m) + δ0m∗(l,m)
(24)

This equation provides an explicit form for ρ(l,m)

based directly on fitness of the organism, with a similar
one holding for the situation in which the organism is
infected.

Connection to empirical studies
Our work complements the rapid recent development
of understanding how gene products that regulate HSCs
operate [33]. However, translating that understanding into
a functional perspective at the organismal level is less
well developed. Recent work suggests that epigenetic fac-
tors [34] are important in controlling HSC behavior [35],
but the scale of those factors is unknown, and evidence
suggests that HSC behavior is regulated by circadian oscil-
lations modulated by photic cues [36], as is the behavior
of whole organisms [37]. Other the hand, it is less clear
how the differentiated T and B cells are regulated in adap-
tive immunity [38]. DNA damage increases in HSCs with
age and such damage is more poorly repaired in older
individuals [39,40]; lymphocytes also age [41]. Rossi et al.
[42] argue that the reduction in adaptive immune capacity
with age and the increased incidence of myeloproliferative
diseases both have origins in changes in the HSC sys-
tem, presumably due to increased damage of HSCs that
could include telomere shortening or other genome main-
tenance failures, and other damage to DNA or proteins
[43-46].
Thus, currently much is known about the mechanism

of HSC system and its descendants [47,48] but much less
is known about how natural selection has shaped these
mechanisms, even though stem cells are units of nat-
ural selection [49]. Using classic ecological methods of
allometric analysis (e.g., [50]) and compartmental mod-
eling, it has recently been argued [51-53] that the fun-
damental architecture of the HSC system is unchanged
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across mammalian species (also see [54]), which sug-
gests a long evolutionary history determining the role
of HSCs in organismal ecology. Recognizing that evo-
lutionary considerations are essential for understanding
every problem in biology [55], our goal here has been
to understand how the penultimate route of differentia-
tion towards a common myeloid or lymphoid progenitor
cell [56-58] can be characterized both dynamically and
evolutionarily.
One common way for approaching an understanding

of the dynamics of HSCs and their products is through
irradiation and transplant experiments (e.g., [59]), which
also have important implications for bone marrow trans-
plants [60,61]. The typical experiment proceeds as follows
[61]: a host animal receives a dose of irradiation sufficient
to destroy the blood system (about 900 rad) but which
leaves the rest of the organ systems intact (the intestinal
system requires 1200-12,000 rad for irreversible damage,
and the brain more than 12,000). This dose will kill the
animal within 2-3 weeks, which gives a sense of the rate
of decline of HSC descendants. Cells of a donor are iso-
lated from the bone marrow by flushing sterile medium
through the bone marrow and then injected into the host
animal. The donor cells first circulate in the blood stream
and then repopulate the bone marrow. The success of
such transplants, from the perspective of the whole organ-
ism is demonstrated when a skin graft from the donor
to the host is not rejected. In the period following trans-
plantation, the donor HSCs produce progenitors that then
differentiate intomyeloid or lymphoid cells. Each differen-
tiation that leads to a commitment of one route or another
involves complex signaling [56,57,62,63] and the signals
themselves must be shaped by natural selection. We call
this a transplant experiment.
A less commonly used approach, but equally impor-

tant, is a perturbation experiment in which an animal
is challenged in a way that reduces its complement of
erythrocytes, platelets or granulocytes (commommyeloid
progenitor (CMP) descendants) or lymphocytes (com-
mon lymphoid progenitor (CLP) descendants) and HSC
activity is observed subsequent to the perturbation. For
example, Cheshier et al. [10] bled mice on days 3, 6, and
9 and then sacrificed them on day 10 and measured the
markers of HSC activity (see [64] for a similar experiment
regarding the epidermis). Baldridge et al. [11] showed that
quiescent HSCs were activated in response to an infec-
tion, another perturbation experiment. The models that
we have described here can be used to predict dynam-
ics of stem cells and their descendants for both kinds of
experiments.

Conclusions
The use of quantitative models to understand the HSC
system can be traced to the classic work of Till et al. [65],

who used branching processes to interpret their experi-
mental results on the variation of spleen colonies formed
after a transplant experiment but evolutionary consider-
ations rarely appear in models in stem cell biology [15].
The concepts developed for understanding how popula-
tions of individuals respond to these abiotic and biotic
processes have colloraries at the cellular level. In partic-
ular, the size of stem cell systems is determined by the
availability of molecular resources, feedbacks from differ-
entiated cells, the effects of the epigenetic environment
and the size of the environment capable of supporting
stem cells [66]. Finally, population biology forces us to
recognize the distinction between typological thinking
(that all individuals of the same species are identical with
constant characteristics and responses) and population
thinking (that variation is real because every individual is
unique and individual variation is central in ontogenetic
and evolutionary history) [67]. While there are verbal and
pictorial models (e.g.,[5,68,69]) of how signaling between
differentiated cells and HSC may work, we have provided
the first general quantitative theory linking how feedbacks
through organismal need shapes the performance of the
HSC system (cf [70]).
In conclusion, our work raises the critical question

of how we connect the MPCR with the vast under-
standing on how signalling shapes HSC products. For
instance, appreciating how the MPCR links to T-cell
specification [71] and drives differential levels of the sev-
eral well characterised precursors (of which lymphoid
primed MPPs are one) requires further consideration of
the both the key qualitative and quantitative positive and
negative feedbacks in these sorts of signalling pathways.
Similarly, linking the ideas of demand feedback to ery-
thropoietin production [72], that differs between foetus
and adult, requires systematic approach to combining
the dynamical drivers with the lifetime fitness of the
organism.
While the broad evolutionary ecological of HSC activ-

ity such as mounting an immune response to infection
are well-known to have a cost on reproductive fitness
(e.g., [73]), appreciating the ecological setting suggests
that standard laboratory animals (bred for many gener-
ations under refined conditions) may not be the most
appropriate organisms for the sorts of empirical tests
of the theory we propose (also see [74] on metabolic
morbidity of laboratory rodents). Studies on the evo-
lutionary ecology of model organisms (see [75] for an
approach using zebrafish) should have greater prominence
in the understanding the population biology of stem cell
responses.
Although raised almost two decades ago [76] this sys-

tems biology approach to stem cell dynamics must include
evolutionary thinking. Approaching stem cell biology as
population biology has much to offer both fields.
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