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Abstract Understanding the dynamics of multi-type micro-
bial ecosystems remains a challenge, despite advancing
molecular technologies for diversity resolution within and
between hosts. Analytical progress becomes difficult when
modelling realistic levels of community richness, rely-
ing on computationally-intensive simulations and detailed
parametrisation. Simplification of dynamics in polymorphic
pathogen systems is possible using aggregation methods and
the slow-fast dynamics approach. Here, we develop one new
such framework, tailored to the epidemiology of an endemic
multi-strain pathogen. We apply Goldstone’s idea of slow
dynamics resulting from spontaneously broken symmetries
to study direct interactions in co-colonization, ranging from
competition to facilitation between strains. The slow-fast
dynamics approach interpolates between a neutral and non-
neutral model for multi-strain coexistence, and quantifies
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the asymmetries that are important for the maintenance and
stabilisation of diversity.
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Introduction

Interacting systems of structured populations are typically
hard to describe. The challenges of representing hierarchi-
cal dynamics apply in multi-species ecological ensembles
(Auger 1983; Coyte et al. 2015), multi-strain micro-
bial pathogens (Gupta et al. 1996; Gomes and Medley
2002; Ferguson et al. 2003) and more generally across
ecosystems (Levin et al. 1997). To address these challenges,
models have to rely on simplification, such as aggregation
methods, separation of time scales and suitable approxi-
mation (Levins 1966; Levin 1992; Adler and Brunet 1991;
Auger and Poggiale 1998; De Roos et al. 2008; Rossberg
and Farnsworth 2011). The study of multi-strain pathogens
is growing rapidly, thanks to technological and molecular
advances quantifying microbial diversity and host immuno-
logical history to unprecedented resolution (Grenfell et al.
2004; Biek et al. 2015). Yet, the principles that govern strain
composition, interactions, and dynamics at the within- and
between- host levels remain largely undefined.

Complex systems, such as polymorphic pathogens, typ-
ically require a high dimensional description with many
degrees of freedom. Yet, their behaviour can sometimes
be approximated or represented in less dimensions (Adler
and Brunet 1991; Kryazhimskiy et al. 2007). The main
challenge for model reduction lies in the identification
of meaningful aggregated variables and projection of the
effective dynamics in this low dimensional representation
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(Singer et al. 2009). Here, we report a new analytical frame-
work for endemic multi-strain pathogens, characterized by
direct interactions among strains upon co-infection. A res-
ident microbial strain can decrease or increase the rate of
a secondary strain acquisition for the host, and different
strains might exhibit different interaction types and magni-
tudes (Faust and Raes 2012). How do these altered suscepti-
bilities affect global epidemiological dynamics? We address
this question focusing on a parsimonious epidemiologi-
cal model that describes colonization and co-colonization
dynamics by circulating subtypes of such a pathogen. We
start by analyzing multi-type coexistence under symmetric
interactions, and derive the explicit links with the non-
symmetric system using a slow-fast dynamic decomposi-
tion, from singular perturbation theory (Tikhonov 1952;
Fenichel 1979).

Our approach is inspired by Goldstone’s idea of sym-
metry breaking yielding slow dynamics (Goldstone et al.
1962), with applications in physics (Sethna 2006; Golu-
bitsky 2002), and Hubell’s neutral hypothesis for commu-
nity assembly processes (Hubbell 2001). A long-standing
debate in ecology is whether coexistence of different species
results from niche adaptation (Gause 1934), or because of
a balance of neutral processes such as immigration, specia-
tion and extinction (MacArthur 1967). This question often
applies when studying genetic or antigenic polymorphisms
in pathogens (Gupta and Maiden 2001; Grenfell et al. 2004;
Lipsitch and O’Hagan 2007; Lipsitch et al. 2009). Most
likely, neutral and niche mechanisms combine to generate
coexistence patterns within and between species (Leibold
et al. 2004), and one or the other may dominate depending
on the scale of consideration (Adler et al. 2007; Wiegand
et al. 2012). The difficulty lies in disentangling the two.
In the ongoing debates on biodiversity, one way to link
niche and neutral perspectives has been to address the essen-
tial role that stochasticity plays on species coexistence and
community assembly processes (Chase 2003; Tilman 2004;
Chisholm and Pacala 2010). Here, we follow the efforts to
bridge these two macroecological theories, but we take a
different path. We focus on the symmetry characteristics of
pairwise interactions between biological entities and their
emergent competition.

Recent studies have highlighted the shape of compe-
tition kernels as a major determinant of the equilibrium
distributions of species along the phenotype space and their
demographic stability (Scheffer and van Nes 2006; Leimar
et al. 2013). The role of transient dynamics for species
persistence on ecological timescales has also been increas-
ingly appreciated, especially in cyclic systems (Hastings
2001). With the advent of the microbiome era (Pepper and
Rosenfeld 2012; Bucci and Xavier 2014; Flint et al. 2007;
Bosch et al. 2013), elucidating the dynamical components

and consequences of inter- and intra-species interactions
is becoming ever more important (Widder et al. 2016).
Simulations of food-webs and Lotka-Volterra competitive
communities have addressed the magnitude of interaction
strengths (McCann et al. 1998), and the diversity of inter-
action types (Mougi and Kondoh 2012) for ecological com-
munity stability. Yet, analytical advances to tackle these
questions across scales are still needed.

In the present study, we advocate that the slow-fast
dynamics decomposition offers a useful tool to provide
insight into microbial interactions. Although we analyze
an endemic multi-strain pathogen and its dynamics on
the epidemiological scale, our results have implications
beyond this immediate system, contributing to novel con-
ceptual unification in community ecology. We show that
neutral dynamics between interacting strains occurs on a
fast timescale, whereas the non-neutral stabilizing forces act
on a slow timescale, dependent on trait differences man-
ifested upon co-colonization. We quantify exactly which
asymmetries matter for multi-strain coexistence, and how
overall transmission intensity affects stabilization of diver-
sity. Together, our results define a promising analytical
approach to better understand microbial ecosystems.

Methods

Slow-fast systems

Separation of dynamics into fast and slow components has
been invoked in numerous studies of ecological and eco-
evolutionary dynamics (Rinaldi and Muratori 1992; Auger
and Poggiale 1998; Rinaldi and Scheffer 2000; Hastings
2004; Cortez 2011), and more generally in the analysis
of complex dynamical systems (Singer et al. 2009). The
approach relies on a canonical system of equations where
the variables change in two (or more) time scales, as
follows:

dx

dt
= f (x, y)

dy

dt
= εg(x, y)

with the small parameter 0 < ε � 1, where f (x, y) and
g(x, y) are bounded. In this example, y is the slow variable
and x is the fast one. By taking ε = 0 in this system, we
obtain the critical fast system, where the slow variable may
be treated as a constant: y = const . Now, assume that for
any initial value x(0), x(t) → �(y) as t → +∞ for some
smooth function � satisfying f (�(y), y) = 0 (*). The set
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(�(y), y) is called the slow manifold. When making the
change of timescale τ = εt , one obtains an equivalent slow
system:

ε
dx

dτ
= f (x, y)

dy

dτ
= g(x, y) (1)

whereby taking ε = 0, we obtain the critical slow dynamics.
When reducing to the slow manifold x = �(y), this slow
dynamics is defined by:

d

dτ
z(τ) = g(�(z), z). (2)

Under the above assumption (*), the dynamics of system
(1) tends to the dynamics of (2) as ε → 0. The precise
statement is given by Tikhonov’s theorem (Tikhonov 1952;
Lobry and Sari 1998; 2005; Hoppensteadt 1966). A more
geometrical point of view was obtained by Fenichel (1979)
(see also (Verhulst 2007) and the references therein for a
most recent overview of these methods). Identifying the
slow manifold in systems with two time scales is nontrivial,
the slow and fast components being often implicit functions
of the original variables. Knowledge of a good parametrisa-
tion of such a slow manifold is key to the understanding and
computation of complex multi-scale systems.

Multi-strain model with direct interactions
at co-infection

We consider a multi-type pathogen, transmitted via direct
contact, following susceptible-infected-susceptible (SIS)
epidemiological dynamics. Examples could include bacte-
ria of the respiratory tract (Garcı́a-Rodrı́guez and Martinez
2002) such as Streptococcus pneumoniae and Haemophilus
influenzae, displaying several genetic and antigenic vari-
ants. In the model, we group the pathogen types in two
subsets, denoted by V and N , assuming types within each
group share similar features (Fig. 1). With a set of ordi-
nary differential equations, we then track the proportion of
hosts in six compartments: susceptibles, S, hosts colonized
by one V type IV , hosts colonized by one N type IN , and co-
colonized hosts IV V , INN , and IV N with two types of each
combination, independent of the order of their acquisition.
We have:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

S = μ(1 − S) − S(λV + λN) + γ I
d
dt

IV = λV S − IV (kV V λV + kV NλN) − (μ + γ )IV
d
dt

IN = λNS − IN(kNV λV + kNNλN) − (μ + γ )IN
d
dt

IV V = kV V λV IV − (μ + γ )IV V
d
dt

INN = kNNλNIN − (μ + γ )INN
d
dt

IV N = kV NλNIV + kNV λV IN − (μ + γ )IV N ,

(3)

where I = IV + IN + IV V + INN + IV N , and the forces of
infection for V and N strains are λV = β(IV +IV V + 1

2IV N)

and λN = β(IN + INN + 1
2IV N).

Because all variables refer to proportions, the last equa-
tion can be omitted using S + I = 1. Susceptibles are
recruited at constant rate μ, equal to the per-capita departure
rate. Upon exposure, a host can become colonized by one V

or N type. Single and dual carriers contribute equally to the
force of infection for each group of types, and hosts carrying
two pathogen clones transmit either with equal probability.
β denotes the per-capita transmission rate, while γ denotes
the clearance rate of any colonization episode, assuming
no immune memory. Our assumption of direct clearance of
co-colonization, back to the susceptible state reflects strain-
transcending immunity as the main player in pathogen
clearance, and is in accord with evidence from some pneu-
mococcus studies (e.g. Malley et al. 2005). Single carriers
can acquire an additional pathogen clone at a rate modified
by a relative factor kij , describing the interaction between
the resident and the challenge type upon encounter. Val-
ues of kij below 1 correspond to antagonism/competition
between types from group i and j , while kij ≥ 1 corre-
spond to facilitation between clones and enhancement of
host susceptibility.

Differently from an early model by Adler and Brunet
(1991), also dealing with interacting strains and altered
susceptibilities, we focus on strains with the same R0

(Diekmann et al. 1990), and consider in addition interac-
tions within strains. This structure can be traced back to
a study by van Baalen and Sabelis (1995), allowing for
co-infection by the same strain, which is deemed more
technically correct in light of evolutionary epidemiology
(Alizon and Lion 2011; Alizon 2013). In addition, we
assume that two co-infecting clones share host resources,
i.e. β is equal for single and dual colonization. The vul-
nerability factor in co-infection, detailed here by the kij

parameters, has also been modelled previously (Adler and
Brunet 1991; Lipsitch et al. 2009; Alizon and Lion 2011;
Alizon 2013). Thus, our formulation shares features with
other co-infection models, while lending itself to analytical
tractability.

We describe pathogen diversity only with a reduced num-
ber of, in this case two, groupings, assuming equivalence
with respect to transmission and clearance rate. Realistic
differences between pathogen types arise only in their direct
interaction abilities, and are studied as symmetry-breaking
perturbations to the system (Golubitsky 2002). The same
model has recently been used and tested on data, in the
context of competing pneumococcal capsular serotypes and
vaccination effects (Gjini et al. 2016). In this new study,
we go deeper in the analysis, and generalize to any form
of interaction, including competition (Dawid et al. 2007)
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Fig. 1 Model diagram. a Pathogen subtypes grouped in two sets, V

and N , characterized by within-group and between-group interaction.
b SIS model structure with single and dual colonization. The black
arrows refer to acquisition of a first clone with forces of infection:
λV = β(IV + IV V + IV N/2) and λN = β(IN + INN + IV N/2).
The grey arrows refer to altered acquisition of a secondary clone kij λi

in an already colonized host, where clone interactions can range from
competition (kij < 1) to cooperation (kij ≥ 1). The dashed arrows
depict colonization clearance at rate γ . The white arrows reflect host
demographic processes: birth and death at equal rate μ

and cooperation (Xavier et al. 2011; McNally et al. 2014)
between strains. These may arise from host environment
modification by colonizing bacteria (Odling-Smee et al.
2003), secretion of proteins and metabolites (West et al.
2006; Nogueira et al. 2009) or immunomodulation (Brown
et al. 2008), and could include the release of toxins that kill
competitors (Riley and Gordon 1999), enzymes that alter the
nutrient state (Dinges et al. 2000) and biofilms that protect
against harsh environments (Drenkard and Ausubel 2002;
Muñoz-Elı́as et al. 2008). By changing the local conditions
in one host, these types of bacterial secretions could affect
the growth of the strains producing them, but also modu-
late environmental features to which competitors may be
relatively better or worse adapted.

In the following, we investigate the epidemiological con-
sequences of such clone interactions, modelled through
the four directed co-colonization rate modifiers (kij ’s). We
apply the slow-fast dynamics perspective to understand how
minor variations in these interaction traits drive the time
evolution of an endemic multi-strain system, over short and
long timescales. The uncovered slow-fast dynamic decom-
position directly relates to the structure of the interaction
matrix, thus providing new avenues for theoretical explo-
ration of microbial competition and facilitation networks.

Results

The rationale behind slow-fast dynamics in our model

Neutral model

The simple version of the epidemiological model uses
the equivalence assumption for strain interaction at co-
colonization:

kV V = kNN = kV N = kNV = k. (4)

We find that the neutral system always admits the trivial
disease-free equilibrium, stable for R0 = β

μ+γ
< 1, which

corresponds to a sub-critical basic reproduction number of
the pathogen (Diekmann et al. 1990). In contrast, if R0 > 1,
the system has a full curve S0 of neutrally-stable equilibria
(see Eq. (12)), which is given by

S0 = {(S, IV (z), IN (z), IV V (z), INN(z), IV N (z)) , z ∈ [−1, 1]} ,

and satisfies

S = 1

R0
,

IV (z) + IN(z) = I ∗
1 (5)

IV V (z) + INN(z) + INV (z) = I ∗
2 = 1 − S − I∗

1 .

More specifically,

I ∗
1 = R0 − 1

R0(k(R0 − 1) + 1)
and I ∗

2 = k(R0 − 1)2

R0(k(R0 − 1) + 1)
,

defining a conservation law for single and dual coloniza-
tion prevalence. Free variation of z ∈ [−1, 1] fine-tunes the
relative frequency distribution between types, and enables
correlated hierarchies to emerge between V and N in col-
onization and co-colonization. If R0 > 1, S0 attracts all
trajectories of the dynamical system (see Appendix B).
Depending on the exact values of R0 and k, single or dual
colonization may dominate in the population. In particu-
lar if k(R0 − 1) > 1, co-colonization is more prevalent.
Clearly, the neutral model is simple analytically, but some-
what degenerate: depending on the initial conditions, any
point of S0 may be a final attractor.
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Such results stem from the symmetry constraints, related
to the population-dynamic neutrality principle postulated
by Hubbell (2001), in which populations can achieve equi-
libria at arbitrary population sizes, the requirement being
a conservation law for total population size summed over
all species. Here, we show analogously that in an epidemi-
ological multi-strain system, a conservation law applies
to the overall prevalence of single and dual colonization
in the population, which can be freely partitioned among
indistinguishable constituent strains.

The slow-fast dynamics decomposition

Our approach is to take neutrality as a first approxima-
tion, to then study the effects of deviations from it. Thus,
we next consider system (3), without the neutral assump-
tion (4), which makes it more biologically realistic, but still
remains hard to analyze. We investigate the effect of dif-
ferential interaction coefficients at dual colonization by two
different pathogen types, thus the dynamics of (3) for

kV V ≈ kNN ≈ kV N ≈ kNV . (6)

We denote by k the average within-group interaction coeffi-
cient:

k = 1

2
(kV V + kNN). (7)

Defining ε as the Euclidean distance of
[kV V , kV N, kNV , kNN ] from [k, k, k, k] in R

4:

ε =
√

(kV V − k)2 + (kNN − k)2 + (kV N − k)2 + (kNV − k)2,

we can rewrite each interaction coefficient of the original
system as:

kε
ij = k + εαij , for i, j ∈ {V,N} and 0 < ε � 1. (8)

Essentially, ε represents the deviation from neutrality in this
interaction trait space between strains. By the definition of
k, it follows that αV V + αNN = 0. In a first approximation
(ε = 0), one obtains the neutral model, which we charac-
terized above. We want to show that if ε > 0 is sufficiently
small, in a first time, the dynamics follow the neutral system
tending quickly to some point of S0, and in a second time,
the dynamics move slowly on S0.

Because there are two timescales which are nontrivially
coupled in the system, in the following, we disentangle
them by explicitly finding the fast and the slow variables.
Thus, we are able to compute the slow dynamics, which are
described by a single equation dependent on the coefficients
αij . By virtue of the Tikhonov theorem (Tikhonov 1952),
we obtain that the long time behaviour of solutions of (3) is
asymptotically close to the behavior of solutions of the slow
dynamics on S0.

Broken symmetry of strain interactions and the slow
manifold

An equivalent representation by change of variables

The more detailed mathematical derivations for the dynam-
ics for general ε 	= 0, are given in Supporting Appendices.
Here, we provide only the key for the method. The first
step is to write the original system in an equivalent slow-
fast form allowing the use of singular perturbation theory.
For this, it is convenient to adopt the following change of
variables:

I1 := IV + IN , I := I1 + IV V + INN + IV N

and

J1 := IV − IN , J = IV − IN + IV V − INN .

With these notations, we get λV = β
2 (I + J ) and λN =

β
2 (I − J ). Replacing these variables and kij = k + εαij for
i, j ∈ {N, V }, the system reads:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

S = m(1 − S) − βSI
d
dt

I = βSI − mI
d
dt

I1 = βSI − mI1 − βkII1 + ε
β
4 g0(I, I1, J, J1)

d
dt

J = βSJ − mJ + kβ
2 (I1J − J1I ) + ε

β
4 g1(I, I1, J, J1)

d
dt

J1 = βSJ − mJ1 − kβJ1I + ε
β
4 g2(I, I1, J, J1)

d
dt

IV N = −mIV N + kβ
2 (I1I − J1J ) + ε

β
4 g3(I, I1, J, J1)

(9)

where m = γ +μ and the functions gk are explicit quadratic
functions of the variables I, I1, J and J1 and of the param-
eters αij (Appendix A). The main aim for this change of
variables arises from the following two facts about sys-
tem (9): (i) The system is triangular by (three) blocks: the
dynamics of (S, I ) depend only on (S, I ), the dynamics of
(I1, J, J1) do not depend on IV N . (ii) The dynamics of the
first block (S, I ) do not depend on ε.

The explicit slow-fast system

The point (ii) above ensures that (S, I ) tends to (S∗, I ∗) =(
1
R0

, 1 − 1
R0

)
as t → +∞ and uniformly in ε. Hence, with-

out loss of generality, we may suppose that S = S∗ and
I = I ∗ and we note

g∗
i (J, J1) = gi(I

∗, I ∗
1 , J, J1).

Moreover, since the dynamics of IV N does not have any
effect on the dynamics of the variables (I1, J, J1), we may
reduce our analysis to the system of the block (I1, J, J1).
Finally, since we are interested only on the approximation
of the order 1 in ε, we write I1(t) = I ∗

1 + εx(t) where I ∗
1 is
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the stationary solution of the equation of I1 for ε = 0, that is

I∗
1 = βS∗I ∗

m + βkI ∗ = (R0 − 1)

R0 (1 + k(R0 − 1))
.

We will also denote the stationary solution of I2 = I − I1

for ε = 0 by

I∗
2 = I ∗ − I ∗

1 = kβ(I ∗)2

m + kβI∗ = k(R0 − 1)2

R0(1 + k(R0 − 1))
.

Using these notations, we focus on the system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
dt

x = −(m + βkI ∗)x + β
4 g∗

0(J, J1) + O(ε)

d
dt

(
J

J1

)

= A

(
J

J1

)

+ ε
2kβx

(
1 0
0 0

) (
J

J1

)

+ ε
β
4

(
g∗

1(J, J1)

g∗
2(J, J1)

)

+ O(ε2)

(10)

where the linear part of the dynamics of (J, J1) is given by
the matrix

A =
( 1

2kβI ∗
1 − 1

2kβI ∗
m −(kβI ∗ + m)

)

.

The system (10) is not yet written on a slow-fast form. How-
ever, the order 0 terms of the dynamics of (J, J1)

t are linear,
and independent of x. This implies that the slow and fast
directions can be computed by a simple spectral analysis of
the matrix A. This matrix has two real eigenvalues: 0 and
−μ = tr(A) = 1

2kβI ∗
1 − (kβI ∗ + m) < 0.

Denoting Vμ = (I ∗
2 , 2I ∗)t and V0 = (I ∗, I ∗

1 )t the two
corresponding eigenvectors, we see that the component y(t)

of (J (t), J1(t))
t in the direction of Vμ goes exponentially

fast to zero, while the component z(t) of (J (t), J1(t))
t in

the direction of V0 varies very slowly. Hence, Vμ and V0

give respectively the fast and the slow directions. The new
variables y(t) and z(t) are obtained explicitly from J (t) =
I ∗

2 y(t)+I ∗z(t) and J1(t) = 2I ∗y(t)+I ∗
1 z(t). This leads to

z = a
J

I ∗ + (1 − a)
J1

I ∗
1

with a = 2(I∗)2

2(I∗)2−I∗
2 I∗

1
∈ [0, 1]. Since J/I ∗ and J1/I

∗
1 both

belong to (−1, 1), we get z ∈ (−1, 1). With these new
variables, one obtains the explicit slow-fast system:
⎧
⎨

⎩

d
dt

x = −(m + βkI ∗)x + β
4 f0(y, z) + O(ε)

d
dt

y = −μy + O(ε)
d
dt

z = ε
(
f2(x, y, z) + O(ε)

)
(11)

where f0(y, z) = g∗
0

(
I ∗

2 y+I ∗z, 2I ∗y+I ∗
1 z

)
and f2 may be

computed explicitly (see Appendix D). At this point, we can
apply Tikhonov’s Theorem (Tikhonov 1952). This is done
in two steps, as detailed in Supporting Appendices: (i) first,
we show that the fast dynamics of the fast variables x and
y (taking ε = 0) goes exponentially fast in time to a (slow)
manifold parametrized by the slow variable z (Appendix B);

(ii) secondly, we describe the slow dynamics of z while
(x, y) belong to this slow manifold (Appendix C).

The key drivers of slow-fast strain dynamics

Starting with the neutral model, and studying realistic devi-
ations from neutrality, we have obtained a fast and slow
component for the dynamics of a multi-strain pathogen
system characterized by asymmetric interaction among sub-
types in co-colonization. In particular, the dynamics first
follow the neutral system, tending to the slow manifold. On
this slow manifold, the epidemiological variables are given
by

IV = 1

2
I ∗

1 (1+ z), IN = 1

2
I ∗

1 (1− z), IV N = kR0I
∗
1 I ∗

2
(1− z2)

(12)

IV V = 1 + z

2
I ∗

2 − kR0I
∗
1 I ∗

4
(1 − z2), and

INN = 1 − z

2
I ∗

2 − kR0I
∗
1 I ∗

4
(1 − z2),

and z remains constant. Once on this slow manifold, the tra-
jectories stay close to this slow manifold and z follows the
slow dynamics (Fig. 2), over the time scale τ = εt . This
slow dynamics is given by

d

dτ
z = C(
 − �z)(1 − z2), z(0) ∈ [−1, 1]. (13)

Thus, we find that two hyper-parameters:


 = αV V − αNN +
(

1 + 2

k(R0 − 1)

)

(αNV − αV N)

and

� = αNV + αV N,

govern the asymptotic dynamics of the system for small ε,
i.e. for small deviation from neutrality. In the above expres-
sions, I∗

2 , I ∗
1 and their sum I ∗ are derived from the neutral

system, and C is a positive constant (see Appendix C), given
by:

C = βI∗I ∗
1 I ∗

2

8(I ∗)2 − 4I ∗
1 I ∗

2
.

In particular, C affects the tempo of the slow dynamics. The
larger C is, for example the higher the transmission rate β,
the faster the slow dynamics are.

From Eq. (13), we can see that the slow dynamics depend
nontrivially on the basic reproduction number R0, the aver-
age within-group interaction k, and the relative interaction
asymmetries in the αij . While � represents the general dom-
inance of between-group versus within-group interaction,

 is a function of more parameters, including R0 and k.
More specifically, 
 reflects the hierarchical dominance of
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Fig. 2 The system trajectories
(black arrows) reach an ε

neighborhood of the slow
manifold (in blue) in a time of
the order O(ε ln(1/ε)). Once in
this neighbourhood, the
trajectories stay ε-close to the
slow manifold and follow the
slow dynamics, taking a time of
order O(ε) to reach the
equilibria. Left panel: single
colonization variables. Right
panel: dual colonization
variables

one group in the system, in this case V . It comprises a
first term that represents �self = αV V − αNN , a measure
of how different the two groups of pathogen types are in
relation to self -interaction. It also comprises a second term
�non−self = αNV − αV N , a measure of how different the
two strains are in relation to interaction with non−self , i.e.
the other group, weighted by a k- and R0- dependent factor.
From the conservation law of the neutral model (Eqs. (3),
(4)), this factor can be related to the ratio between dual and
single colonization in the symmetric system as follows:


 = �self +
(

1 + 2
I ∗

1

I ∗
2

)

�non−self ,

indicating that it is also the odds in favour of single colo-
nization that amplify the relative importance of cross-group
interaction differences �non−self in the slow dynamics. The
reason is that cross-group interaction coefficients effec-
tively modulate the transition from pure single (IV or IN )
to mixed dual colonization (IV N ), thus the more preva-
lent single colonization is, the more significant become any
asymmetries in outward fluxes from this host class favour-
ing one of the two strains. This difference in ‘investment’ in
the commonly shared host pool IV N acts to reinforce the net
fitness differential and emergent hierarchy between strains
at the epidemiological level.

� and � and the endemic prevalence equilibria

Essentially, 
 and � drive the stabilizing forces between
strains on the slow manifold. Arising from asymmetric
interaction among co-colonizing clones, these forces also
configure in detail strain composition at endemic equi-
librium. The steady states of the slow variable z can be
calculated from solving Eq. (13). They are z∗ = ±1 and
z∗ = 


�
. Plugging these solutions into Eq. 12, we recover

the endemic equilibria of the original epidemiological sys-
tem in terms of V and N prevalences. These are described in
Fig. 3. The V-N coexistence steady state corresponds to the

solution z∗ = 

�

which is positive and biologically feasible
for |z∗| < 1, i.e. |
| < |�|. Linearization about z∗ = 


�

reveals that this steady state is stable whenever � > 0 (rep-
resented by the dark grey region in Fig. 3). The N-only
steady state corresponds to the z∗ = −1 solution, while
the V-only equilibrium corresponds to the z∗ = 1 solution.
The latter two solutions may be stable or unstable. The V-
only equilibrium is stable for 
 > �, while the N-only
equilibrium is stable for 
 < −�. In particular, a scenario
of bistability of the exclusion equilibria (z∗ = ±1) arises
for � < 0 and |
| < |�|, where the coexistence solution
z∗ = 


�
is unstable.

Thus, all these asymptotic scenarios and their stability
properties are determined by the magnitudes of the asym-
metries in interaction coefficients, as summarized by 
 and
�. The stability condition for z∗ = 


�
, � > 0, reflects a

strong exchange (high inter-connectance) between groups.
It becomes evident that stable V-N coexistence is possible
only if net exchange between groups is sufficiently high,
relative to within-group exchange. Linearization about this
equilibrium shows that the stability of V-N coexistence is
maximized on the line 
 = 0, where the trait differences
between pathogen types balance out, and as a result they
coexist at equal frequencies.

Inspecting 
 and � for special cases yields further
insight. For example, the case of equal cross-strain inter-
action translates to αNV = αV N , and the condition for
stable coexistence reduces to |αV N | > |αV V − αNN |/2.
We thus recover in our system an analogy with intra-
and inter-specific competition driving stable coexistence at
higher ecological scales (Tilman 1987). Another feature of
the system is that when αNV − αV N > 0, 
 decreases
as R0 increases. This means that for the same interaction
coefficients between strains, we may move from a V-only
endemic state to a coexistence regime, and even to an N-
only state, if 
 becomes too low. In other words, just due to
altered overall transmission, the epidemiological dominance
between strains can shift.
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Fig. 3 Graphical summary of the system equilibria for multi-strain
dynamics on the slow manifold described by Eq. (13), as a func-

tion of the hyper-parameters 
 = αV V − αNN +
(

1 + 2

k(R0 − 1)

)

(αNV − αV N) and � = αNV + αV N . The insets show the dynamics
of the slow variable dz/dτ versus z for canonical cases of Eq. (13).
The zero solutions of dz/dτ (z = −1, 1, 
/�) correspond via Eq.12
to the endemic equilibria of the original system (N-only, V-only, V-N

coexistence). Their stability conditions are illustrated through the dif-
ferent shaded regions. For example, the darker shaded region on top
delimits stable V-N coexistence, matching the z∗ = 
/� solution of
Eq. (13). The line 
 = 0 (� > 0) corresponds to equal prevalence of
the two strains at the epidemiological level, where differences in inter-
action traits cancel out. This represents maximal diversity and maximal
stability of the coexistence equilibrium

The role of R0 is evident also in the bistability regime.
In our system, bistability occurs when cross-group inter-
action is weak (relative to within-group interaction) � =
αNV + αV N < 0, and when |
| < |�|. Such low values of
|
|, all else equal, could be obtained by increasing the basic
reproduction number R0; in other words, higher transmis-
sion intensities would favour bistability over a wider range
of weak cross-group interactions. This could be related to
an ecological prediction on community assembly processes
(Chase 2003), stating that in systems where species inter-
connectance rates are low and productivity is high, multiple
stable equilibria are more likely than single stable steady
states. When the exclusion equilibria are bistable, merely
the order of pathogen strains entering a community of
hosts can lead to a different final colonization composition.
In outcomes depending on initial conditions, stochastic-
ity can play a big role, and in reality, we might observe
flips between circulation of one pathogen group, and peri-
ods where only the other strain is present, with transient
ecological coexistence in between.

Approximation error

Since our approximation is derived from a singular pertur-
bation expansion for small deviation from neutrality, we
expect that convergence of the approximation to the exact
solution improves as the perturbation becomes smaller and
is uniform over all time, as our system does not have
chaotic or periodic attractors. Thus, we measure accuracy
through the maximum error over all times when approxi-
mating five-dimensional trajectories (S equation omitted),
similar to the approach by Rossberg and Farnsworth (2011),
evaluating aggregation methods for multi-species dynamics.
The overall error of our slow-fast approximation is given
by:

E =
√
√
√
√

5∑

i=1

max
t

(

var
approx
i (t) − vari(t)

)2

, (14)

where variable var is indexed to represent IV (t), IN(t),
IV V (t), INN(t) and IV N(t).
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Fig. 4 As the asymmetries
among interaction coefficients
vanish ε → 0, the error of the
slow-fast approximation tends to
zero. The different lines depict
random combinations of R0 and
k, in the range R0 ∈ (1, 8] and
k ∈ (0, 8], and random choice of
αij ∈ (−1, 1). The simulations
were performed with fixed
m = μ + γ = 0.5, thus different
R0 can be related to variation in
transmission rate β

To test the quality of our approximation, we ran trajecto-
ries of the original and approximated systems, starting from
the slow manifold at the point z(0) = 0, for a period of time
equal to T = 108. As expected, we found that the error tends
to zero as ε tends to zero, i.e. as the deviation from neutrality
in interaction coefficients decreases. Furthermore, the speed
of convergence is independent of R0 or k (Fig. 4). This illus-
trates the validity of our approximation, and its robustness
to variation in overall intensity of transmission or global
interaction strength between types.

Discussion

Microbial pathogens display diversity on many levels,
including genetic and antigenic polymorphisms, and are
thus bound to be resilient in nature. Understanding the ecol-
ogy underpinning this diversity is crucial to explain how
these systems might respond to human interventions, such
as vaccines and drugs (Lipsitch 1997; Martcheva et al. 2008;
Colijn and Cohen 2015), and how they might spontaneously
evolve (Dercole et al. 2002). We must therefore seek for
comprehensive models that can provide mathematical and
ecological insight into the short- and long-term dynam-
ics of such systems. On one hand, computer simulations
may offer quick illustrations of hypotheses and investigation
of scenarios. Yet, they cannot provide a deep understand-
ing, required for successful control. Given the complexity
and nonlinearity of such multi-strain systems, approxima-
tions are key to maximize insight and explanatory power at
minimal complexity.

In this paper, we have presented a new application of
singular perturbation theory to analyze the transmission
dynamics of an endemic pathogen with multiple inter-
acting subtypes. These dynamics evolve on a fast and

slow timescale at the epidemiological level. While the
neutral model, based on symmetric interactions upon co-
colonization, provides the template of neutrally-stable equi-
libria for strain coexistence reachable on a fast time scale,
the non-neutral model, allowing for asymmetric interac-
tions, captures the slow stabilizing dynamics. Proponents of
the neutral theory have recognized that trophically similar
species in communities might be ecologically equivalent, at
least to a first approximation (Chave 2004; Hubbell 2006).
Although the notion that species differences promote coex-
istence, by inducing stabilizing effects at the community
level which is generally accepted, it is still unclear which
differences matter for coexistence, or whether differences
are necessarily needed for coexistence. The quest is ongoing
across systems, from large commensal microbial communi-
ties such as the gastrointestinal microbiome (Jeraldo et al.
2012), to pathogens, most-prominently multi-strain systems
such as the bacteria pneumococci (Cobey and Lipsitch
2012; Gjini et al. 2016) and dengue viruses (Wearing and
Rohani 2006; Mier-y Teran-Romero et al. 2013).

Here, using a simple epidemiological framework, and
focusing on direct interaction between strains at co-
colonization as our trait of interest, we have addressed the
question of which differences matter at the group level,
summarizing the slow stabilizing forces with only two
hyper-parameters � and 
. In these hyper-parameters, the
asymmetries in intra-group and inter-group interactions at
co-colonization combine with type-transcending basic
reproduction number R0 and average within-group inter-
action coefficient k. Asymptotically effective multi-strain
coexistence occurs only within certain regions of param-
eter space, depending on � and 
. However, and most
importantly, the slow dynamics, revealed here, details also
the transient behaviour of the system, which may be sub-
stantially long in the case of related strains. A similar
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perspective to ours, based on trait asymmetries and slow-
fast dynamics, has also been used to analyze the competition
between bacterial populations in a chemostat (Rapaport
et al. 2009), showing that coexistence of species with simi-
lar growth functions can last for a very long time, even when
the competitive exclusion principle applies asymptotically.

The present study extends and generalizes findings in
(Gjini et al. 2016), by detailing how asymmetric direct
interaction (competition/facilitation) between clones at the
epidemiological level acts as an alternative route to sta-
bilization of polymorphism in endemic pathogen systems,
with the neutral model as a first-order approximation (Lip-
sitch et al. 2009). When pathogen sub-types are aggregated
in two sets, interaction parameters that describe each group
might vary with type composition. While the symmetric
system accommodates a family of neutrally-stable steady
states, realistic small perturbations drive slow stabilizing
dynamics nearby, that we have characterized here. Simi-
larly to Adler and Brunet (1991), also modeling interacting
strains which alter host susceptibility, we highlight here
deviation from neutrality in interaction parameters as a key
aspect of the dynamics and of the corresponding model
reduction. A difference, however, between our approach and
the one by Adler and Brunet (1991) is that our starting aim
was not to aggregate the original variables for ultimately
working with the reduced model. Starting from the fast-slow
dynamic decomposition and the reduced model equations,
here we were able to deconvolute the aggregated variables,
in order to recover back the original system, including the
full resolution of co-colonization. With increasing technolo-
gies that can detect and quantify co-occurrence in pathogen
systems, there comes greater potential for including its
details in theoretical analyses.

Future prospects

Our method can be extended to study various perturba-
tions of the epidemiological system and its relaxation time
back to equilibrium, to consider the effects of stochastic-
ity, or of globally changing trends such as a time-varying
R0. Although in our model, we have assumed a constant
transmission intensity, this does not exclude the possibil-
ity that R0 may change or fluctuate over time, for example
due to weather conditions, seasonality or antibiotic use.
Indeed, from the definition of 
 and the equilibria on the
slow manifold (Fig. 3), we can see that under fixed inter-
action parameters, changes in R0 alone can be sufficient
to alter the pattern of dominance among strains at the sta-
ble coexistence equilibrium, or even shift the system from
stable coexistence to an exclusion state. For such changes
in R0 to effectively impact the slow dynamics, a necessary
requirement is that they must occur over a time scale slower
than O(ε). Depending on the amplitude and timescale of

R0 variation, interesting effects could emerge. Time-varying
R0 may occur alone or in conjunction with specific inter-
ventions such as vaccines that target a subset of pathogen
strains. Thus, it is possible that parallel changes in overall
transmission, during such targeted vaccination programme,
might boost the decline of vaccine subtypes, or counteract it,
depending on the underlying interaction strengths between
vaccine and non-vaccine strains. The interplay of timescales
with regards to R0 and strain interactions deserves further
theoretical investigation, and may turn out especially rele-
vant to explain epidemiological trends across geographical
settings, for example of S. pneumoniae serotypes (O’Brien
2008; Moore and Whitney 2008).

In the conservation law, central to our neutral model (fast
dynamics), prevalence of susceptible hosts at equilibrium,
S∗, is independent of the interaction parameter k. This is
a direct consequence of assuming direct clearance of co-
colonization, as opposed to sequential clearance, and is con-
sistent with general strain-transcending immunity. Relaxing
this assumption would imply allowing co-colonized hosts
to clear one clone at a time and transit into the single col-
onization class instead. This would make the prevalence of
susceptibles in the neutral model a direct function of k, dif-
ferent from the 1/R0 value in this paper. Application of the
slow-fast dynamics approach to this case might prove more
difficult since we would lose the triangular block structure
of the equations in system (9), but remains of interest for the
future.

Although we have considered groups of pathogen sub-
types equivalent in most life-history traits, e.g. transmission
and clearance rates, a more realistic model could allow
for some variation, as in (Adler and Brunet 1991). This
would introduce another layer of variability between the
two groups, namely in their ability to colonize suscepti-
ble hosts, besides simply their ability to co-colonize. Such
transmission rate differential would alter the landscape of
steady-states, potentially allowing for multistability of alter-
native coexistence equilibria. Furthermore, the magnitude
of such differential (RV

0 /RN
0 ) would reshape the slow-fast

dynamics decomposition that we obtained here, possibly
enabling a third relevant timescale to emerge. This scenario
could apply in studies of antibiotic resistance dynamics,
where strains may vary in their direct competitive abili-
ties, as well as in their fitness cost of resistance (e.g. lower
transmission rate). Co-variation between group-specific R0

and interaction strengths kij will likely drive interesting
dynamics, enabling exploration of colonization-competition
trade-offs.

Our findings may bear relevance also to studies on
the evolution of traits modifying competitive performance
(Dercole et al. 2002), or the evolution of microbial social
interactions (West et al. 2006). The main players in our
system are closely related strains, namely equal in all
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life-history traits, except for slight differences in how they
modify the rate of co-colonization in already colonized
hosts. This interaction trait, acting both within the same
strain and between strains, is shown to critically drive coex-
istence and transient dynamics between these pathogen
types in a population. Viewing these results under the light
of microbial life-history evolution, i.e. kij as representing
microbial social interactions, our framework could be use-
ful to study the dynamics of this trait. Once a mutant arises
and competes with a resident strain, we obtain the model
studied in this paper, where the distance between mutant
and resident (ε), and the hyper-parameters 
 and � need
to be considered. The system response to such trait differ-
ences could display the slow-fast dynamic characteristics
that we have described here. Only in particular cases, the
trait differential, combined with R0 and mean k, should lead
to coexistence of the mutant and the resident, each with
their own repertoire of ‘social’ behaviours. Besides the final
evolutionary outcome, it is important to relate the timescale
over which such polymorphisms in social interactions can
be maintained, with the magnitude of the polymorphism
itself. As ecological interactions in microbial communities
often evolve on the same timescales as the species them-
selves evolve, we must seek to develop frameworks that
connect the two. This is an active research field, where
mathematical approaches could be useful, especially if inte-
grated with experimental evolution in synthetic or natural
microbial communities (Xavier 2011; Widder et al. 2016).

Finally, our model considers a relatively simple ecolog-
ical scenario (n = 2), with only two sets of pathogen
subtypes characterized by net pairwise interactions. The
next challenge is to extend the slow-fast dynamic decompo-
sition to a higher n. Will multiple nested slow-fast dynamics
emerge? Can these be related to previous aggregation frame-
works (Adler and Brunet 1991), proposed for multi-strain
systems? In reality, we might always want to restrict anal-
ysis to a relatively small set of functionally relevant groups
of types, defined by taxonomic or antigenic properties, or
practical purposes such as types targeted by a vaccine vs.
non-target ones. Thus, an explicit resolution at the level
of individual types and all their concurrent combinations
may not strictly be needed. Generalising our framework to
a larger number of competing entities is an exciting avenue
for the future, and the basic setup for slow-fast dynamic
decomposition that we develop here will provide a useful
foundation.
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