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Join forces or cheat: evolutionary analysis of a

consumer-resource system

Andrei R. Akhmetzhanov, Frédéric Grognard, Ludovic Mailleret, and Pierre

Bernhard

Abstract In this contribution we consider a seasonal consumer-resource system and

focus on the evolution of consumer behavior. It is assumed that consumer and re-

source individuals live and interact during seasons of fixed lengths separated by

winter periods. All individuals die at the end of the season and the size of the next

generation is determined by the the consumer-resource interaction which took place

during the season. Resource individuals are assumed to reproduce at a constant rate,

while consumers have to trade-off between foraging for resources, which increases

their reproductive abilities, or reproducing. Firstly, we assume that consumers coop-

erate in such a way that they maximize each consumer individual fitness. Secondly,

we consider the case where such a population is challenged by selfish mutants who

do not cooperate. Finally we study the system dynamics over many seasons and

show that mutants eventually replace the original cooperating population, but are

finally as vulnerable as the initial cooperating consumers.
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1 Introduction

Among the many ecosystems found on Earth, one can easily identify many examples

of resource-consumer systems like e.g. plant-grazer, prey-predator or host-parasitoid

systems known in biology [12]. Usually, individuals involved in such systems (bac-

teria, plants, insects, animals, etc.) have conflicting interests and models describing

such interactions are based on principles of game theory [14, 8, 2, 7]. Hence, the

investigation of such models is of interest to both game theoreticians and behavioral

and evolutionary biologists.

One of the main topics of evolutionary theory is addressing whether individu-

als should behave rationally throughout their lifetime. Darwin’s statement of the

survival of the fittest indicates that evolution selects the best reproducers, so that

the evolutionary process should result in selecting organisms which appear to be-

have rationally, even though they may know little about rationality. Evolutionary

processes may thus result in organisms which actually maximize their number of

descendants [17]; this is true in systems in which density dependence can be ne-

glected, or in which the relation between the organisms and their environment is

fairly simple [13]. Otherwise, such a rule may not apply and evolution is expected

to yield a population which employs an evolutionarily stable strategy; such a strat-

egy will not allow them to get the maximum possible number of descendants, but

cannot be beaten by any strategy a deviant organism may choose to follow [10, 19].

In the following, since we will be concerned with populations in which some or-

ganisms may deviate from the others, we will use the terminology from Adaptive

Dynamics [6] and designate by ‘mutants’ the organisms adopting a strategy differ-

ent from the one of the main population, which will be referred to as the resident

population.

In this work we study the fate of mutants based on an example of a seasonal

consumer-resource system with optimal consumers as introduced by [1] using a

semi-discrete approach [9]. In such a system, consumer and resource individuals

are active during seasons of fixed length T separated by winter periods. To give

an idea of what such a system could represent, the resource population could be

annual plants and the consumer population some univoltine phytophagous insect

species. All consumers and resources die at the end of the season and the size of

the next generation is determined by the number of offspring produced during the

previous season (i.e. offspring are made of seeds or eggs which mature into active

stages at the beginning of the season). We assume that consumers have to share their

time between foraging for resources, which increases their reproductive abilities, or

reproducing. The reproduction of the resource population is assumed to occur at a

constant rate.

In nature several patterns of life-history can be singled out, but they frequently

contain two main phases: growth phase and reproduction phase. The transition be-

tween these two phases can be strict when the consumers only feed at the beginning

of their life and only reproduce at the end, or there could exist an intermediate

phase between them where growth and reproduction occur simultaneously. Such

types of behaviors are called determinate and indeterminate growth patterns re-



Join forces or cheat: evolutionary analysis of a consumer-resource system 3

spectively [15]. Time-sharing between laying eggs and feeding for the consumers

will be modeled by the variable u: u = 1 means feeding, u = 0 on the other hand

means reproducing. Intermediate values u ∈ (0,1) describe a situation where, for

some part of the time, the individual is feeding and, for the other part of the time, it

is reproducing.

Firstly, we consider a population of consumers maximizing their common fit-

ness, all consumers being individuals having the same goal function and acting for

the common good; these will be the residents. We then suppose that a small fraction

of the consumer population starts to behave differently from the main population,

and accordingly will call them mutants. The aim of this paper is to investigate how

mutants will behave in the environment shaped by the residents, and what conse-

quences can be expected for multi-season consumer-resource systems.

2 Main model

2.1 Previous work

Let us first consider a system of two populations: resources and consumers without

any mutant. The consumer population is modeled with two state variables: the aver-

age energy of one individual p and the number of consumers c present in the system,

while the resource population is described solely by its density n. We suppose that

both populations are structured in mature (adult insects/plants) and immature stages

(eggs/seeds). During the season, mature consumers and resources interact and repro-

duce themselves. Between seasons (during winter periods) all mature individuals die

and individuals become mature in the next season.

We suppose that no consumers have any energy (p = 0) at the beginning of the

season. The efficiency of reproduction is assumed to be proportional to the value of

p; it is thus intuitive that consumers should feed on the resource at the beginning

and reproduce at the end once they have gathered enough energy. The consumers

thus face a trade-off between investing their time in feeding (u = 1) or laying eggs

(u = 0). According to [1], the within season dynamics are given by

ṗ =−κ p+ηnu, ṅ =−δcnu, (1)

where we assume that neither population suffers from intrinsic mortality; κ , η and

δ are constants. After rescaling the time and state variables, the constants κ and η
can be eliminated and the system of equations (1) can be rewritten in the simpler

form:

ṗ =−p+nu, ṅ =−cnu, (2)

where c is a rescaled parameter which is proportional to the number of consumers

present in the system.
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Fig. 1 Optimal collective behavior of the residents illustrated in the (τ,x) plane (see eq. (4)) where

τ is reverse time. On the figure, solutions are then initiated at (T, p(0)/n(0)) where T is the length

of the season.

The amount of immature offspring produced during the season depends on the

sizes of the populations

J =
∫ T

0
θc(1−u(t))p(t)dt, Jn =

∫ T

0
γn(t)dt, (3)

where θ and γ are constants.

We assume that consumers maximize the value J, their number of descendants,

which is a classical measure of fitness. We see that this is an optimal control problem

which can be solved using dynamic programming [3] or the Pontryagin maximum

principle [16]. To compute the solution of this problem, the constants c, θ and γ can

be omitted from (3), without loss of generality.

All the equations describing the problem are homogeneous of degree one in the

state variables, which can be only positive. This is a particular case of Noether’s

theorem in the calculus of variations about problems which are invariant under a

group of transformations [4]. Hence, the dimension of the phase space of the optimal

control problem (2-3) can be lowered by one unit by the introduction of a new

variable x = p/n. In this case its dynamics can be written in the form:

ẋ =−x(1− cu)+u, (4)

and the Bellman function Ũ(p,n, t) =
∫ T

T−t(1− u(s))p(s)ds with the starting point

at (p(t),n(t)) = (p,n) can be expressed as Ũ(p,n, t) = nU(x, t).
The solution of the optimal control problem (2-3) has been obtained in [1] and

the optimal behavioral pattern for c = 1.5 and T = 2 is shown on Fig. 1. These

solutions are not restricted to the case where consumers have no energy at the initial

time. The region with u = 1 is separated from the region with u = 0 by a switching



Join forces or cheat: evolutionary analysis of a consumer-resource system 5

curve S and a singular arc Sσ such that

S: x = 1− e−τ (5)

Sσ : τ =− logx+
2

xc
−

4

c
, (6)

where τ = T − t. They are shown on Fig. 1 by thick curves. Along the singular arc

Sσ the consumer uses intermediate control u = û:

û =
2x

2+ xc
. (7)

When P(0) = 0, one might identify a bang-bang control pattern for short seasons

T ≤ T1 and a bang-singular-bang pattern for long seasons T > T1. The value T1 is

computed as

T1 =
log(c+1)+(c−2) log2

c−1
, (8)

so that it depends on the number of consumers present in the system.

The optimal value of the amount of offspring produced by an individual can be

computed using this solution. In the following, we focus on the behavior of mutants

appearing in a population of consumers adopting the type of behavior given in Fig. 1.

2.2 Consumer-mutant-resource system

Suppose that there is a subpopulation of consumers that deviate from the residents’

behavior. Let us assume that these are selfish and maximize their own fitness, and

not the fitness of the whole population, taking into account that the main resident

population acts as if the mutants were kin (i.e. residents do not understand that

mutants are selfish). This means that the residents adjust their strategy by changing

the control whenever its level is intermediate. Such adjustment is possible only when

some certain conditions are satisfied and mutant subpopulation is small enough (see

section 3.2)

Denote the proportion of mutants in the whole population of consumers by ε and

the variables describing the state of the mutant and resident populations by symbols

with subscripts “m” and “r” respectively. Then the number of mutants and residents

will be cm = εc and cr = (1− ε)c and the dynamics of the system can written as

ṗr =−pr +nur, ṗm =−pm +num, ṅ =−nc [(1− ε)ur + εum] , (9)

similarly to (2). The variable um ∈ [0,1] defines the decision pattern of the mutants.

The control ur ∈ [0,1] is the decision pattern of the residents and defined by the

solution of the optimal control problem (2-3).

The number of offspring in the next season is defined similarly to (3):
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Jr =
∫ T

0
θ(1−ur(t))cr pr(t)dt, Jm =

∫ T

0
θ(1−um(t))cm pm(t)dt, Jn =

∫ T

0
γn(t)dt,

(10)

where the mutant chooses its control um striving to maximize its fitness Jm.

We can see that the problem under consideration is described in terms of a two-

step optimal control problem (or a hierarchical differential game): in the first step

we define the optimal behavior of the residents (see section 2.1), in the second step

we identify the optimal response of the mutants to this strategy.

3 Optimal free-riding

Since θ and γ are constants, they can be omitted from the description of the op-

timization problem Jm → max
um

. In this case the functional Jm/(θcm) can be taken

instead of the functional Jm.

Let one introduce the Bellman function Ũm for the mutant population. It satisfies

the Hamilton-Jacobi-Bellman (HJB) equation

∂Ũm

∂ t
+max

um

[

∂Ũm

∂ pr

(−pr +nur)+
∂Ũm

∂ pm

(−pm +num)−

∂Ũm

∂n
nc((1− ε)ur + εum)+ pm(1−um)

]

= 0. (11)

Introducing new variables xr = pr/n and xm = pm/n and using a transformation

of the Bellman function of the form Ũm(pr, pm,n, t) = nUm(xr,xm, t), we can reduce

the dimension of the problem by one using Noether’s theorem. The modified HJB-

equation (11) takes the following form

H
.
=−ν +max

um

{

λr [−xr(1− c((1− ε)ur + εum))+ur]+

λm [−xm(1− c((1− ε)ur + εum))+um]−

Umc((1− ε)ur + εum)+ xm(1−um)
}

= 0, (12)

where the components of the gradient of the Bellman function are denoted by

∂Um/∂xr = λr, ∂Um/∂xm = λm and ∂Um/∂τ = ν , variable τ denotes backward

time, τ = T − t. The optimal control can be defined be um = Heav(Am), where

Am = ∂H /∂um = λrxrεc+λm(1+ xmεc)−Umεc− xm and Heav(·) is a unit step

function whose value is zero for negative argument and one for positive argument.

One of the efficient ways to solve the HJB-equation is to use the method of

characteristics (see e.g. [11]). The system of characteristics for equation (12) is
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x′r = xr(1− c((1− ε)ur + εum))−ur, x′m = xm(1− c((1− ε)ur + εum))−um,

λ ′
r =−λr, λ ′

m =−λm +1−um, U ′
m =−Umc((1− ε)ur + εum)+ xm(1−um),

(13)

where the prime denotes differentiation with respect to backward time τ . The ter-

minal condition Um(xr,xm,T ) = 0 gives λr(T ) = λm(T ) = 0. Thus Am(T ) < 0 and

um(T ) = 0 (mutants should reproduce at the very end of their life).

3.1 First steps

If we emit the characteristic field from the terminal surface t = T with ur = um = 0,

then

x′r = xr, x′m = xm, λ ′
r =−λr, λ ′

m =−λm +1, U ′
m = xm ,

λr(T ) = λm(T ) = 0, Um(T ) = 0 .

We get the following equations for state and conjugate variables and for the Bellman

function: xr = xr(T )e
τ , xm = xm(T )e

τ , λr = 0, λm = 1− e−τ , Um = xm(1− e−τ).
From this solution we can see that there could exist a switching surface Sm:

Sm: xm = 1− e−(T−t), (14)

such that Am = 0 on it and where the mutant changes its control. Equation (14)

is similar to (5). However, we should take into account the fact that there is also

a hypersurface Sr, where the resident changes its control from ur = 0 to ur = 1

independently of the decision of the mutant. Hence it is important to define which

surface, Sr or Sm the characteristic intersects first, see Fig. 2. Suppose that this is the

surface Sr. Since the control ur changes its value on Sr, the HJB-equation (12) also

changes and, as a consequence, the conjugate variables ν , λr and λm could possibly

be discontinuous. Let us denote the incoming characteristic field (in backward time)

by “−” and the outcoming field by “+”. Consider a point of intersection of the

characteristic and the surface Sr with coordinates (xr1
,xm1

,τ1). Thus xr1
= 1− e−τ1

and the normal vector ϑ to the switching surface is written in the form

ϑ = ∇Sr = (∂Sr/∂xr,∂Sr/∂xm,∂Sr/∂τ)T = (−1,0,1− xr1
)T .

From the incoming field we have the following information about the co-state λ−
r =

0, λ−
m = xr1

, ν− = xm1
(1− xr1

). Since the Bellman function is continuous on the

surface Sr, we have: U+
m =U−

m =Um = xm1
xr1

. The gradient ∇Um has a jump in the

direction of the normal vector ϑ : ∇U+
m = ∇U−

m + kϑ . Here k is an unknown scalar.

Thus

λ+
r =−k, λ+

m = xr1
, ν+ = xm1

(1− xr1
)+ k(1− xr1

) (15)

If we suppose that the control of the mutant is the same, u+m = 0 (in this case A +
m

should be negative), the HJB-equation (12) has the form
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Fig. 2 Some family of optimal trajectories emanating from the terminal surface

−ν++λ+[−xr1
(1− (1− ε)c)+1]−λ+

m xm1
(1− (1− ε)c)− (1− ε)cUm + xm1

= 0.
(16)

Substituting the values from (15) into (16) we get: k[−2(1−xr1
)−xr1

(1−ε)c] = 0,

which leads to k = 0 and, actually, there is no jump in the conjugate variables. They

keep the same values as in (15) and A +
m = A −

m .

Conversely, the mutant may react to the decision of the resident and also change

its control on Sr from u−m = 0 to u+m = 1. This is fulfilled if A +
m > 0. Substitution

of the values ν+, λ+
r and λ+

m from (15) to the HJB-equation (12) gives k = (xr1
−

xm1
)/(xr1

c+(1− xr1
)) and

A
+

m = λ+
r xr1

εc+λ+
m (xm1

εc+1)−εcUm−xm1
=(xr1

−xm1
)
(1− ε)xr1

c+(1− xr1
)

xr1
c+(1− xr1

)
,

which is positive when xr1
> xm1

. In Fig. 2 this corresponds to the points of the

surface Sr which are below the line l1: xr = xm = 1−e−τ . For the optimal trajectories

which go through such points: ur(τ1+0) = um(τ1+0) = 1. One can show that there

will be no more switches of the control. However, if we consider a trajectory going

from a point above l1, then ur(τ1 +δ ) = 1 and um(τ1 +δ ) = 0 with arbitrarily small

δ > 0; a switch of the control um from zero to one then takes place later (in backward

time). After that, there will be no more switches.

Now consider a trajectory emitted from the terminal surface which first inter-

sects the surface Sm rather than the surface Sr. In this case the situation depicted in

Fig. 3 takes place: one might expect the appearance of a singular arc Sσ
1 there. The

following are necessary conditions for its existence
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H = 0 = H0 +Amum, H0 =−ν −λxr −λmxm + xm (17)

Am = 0 = λrxrεc+λm(xmεc+1)− εcUm − xm (18)

A
′

m = {Am H0}= 0
.
= Am1, (19)

where the curly brackets denote the Poisson (Jacobi) brackets. If ξ is a vector of

state variables and ψ is a vector of conjugate ones (in our case ξ = (xr,xm,τ) and

ψ = (λr,λm,ν)), then the Poisson brackets of two functions F = F(ξ ,ψ,Um) and

G = G(ξ ,ψ,Um) are given by the formula: {F G}= 〈Fξ +ψ FUm , Gψ〉−〈Fψ , Gξ +
ψ GUm〉. Here 〈·, ·〉 denotes the scalar product and e.g. Fψ = ∂F/∂ψ .

After some algebra, (19) takes the form

Am1 = νεc+ xm +λrxrεc− (xm +1)(1−λr) = 0 (20)

We can derive the variable ν from (17) and substitute it into (20). We get Am1 =
xm −1+λm = 0. This leads to λm = 1− xm and

λr =
xm + εUm +(1− xm)(xmεc+1)

xrεc
,

which is obtained from (18).

To derive the singular control um = ũm ∈ (0,1) along the singular arc, one

should write the second derivative: A ′′
m = 0 = {{AmH }H } = {{AmH0}H0}+

{{AmH0}Am}ũm. Thus

ũm =
{{AmH0}H0}

{Am{AmH0}}
=

2xm

2+ xmεc
, (21)

which has the same form as (7).

The equation for the singular arc Sσ
1 can be obtained from the system of dynamic

equations (13) by substituting ur = 0 and um = ũm from (21):

x′m =−
x2

mεc

2+ xmεc
, xm(τ = log2) = 1/2 .

Finally, we have the analogous expression to (6):

Sσ
1 : T − t =− logxm +

2

xmεc
−

4

εc
(22)

for ε 6= 0. If ε = 0, the surface Sm is a hyperplane xm = 1/2.

After these steps we have the structure of the solution shown in Fig. 3.
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Fig. 3 Construction of the singular arc Sσ
1

3.2 Optimal motion along the surface Sσ
r

According to the computations done in section 2.1, resident consumers must adopt

a behavior ur which keeps the surface Sσ
r invariant (see Fig. 3). In a mutant-free

population, this is done by playing the singular control (7), but if mutants are present

in the population, the dynamics of the system are modified and the mutant-free

singular control (7) does not make Sσ
r invariant any more. However, residents may

still make Sσ
r invariant by adopting a different behavior, denoted ûr, as long as the

mutants’ influence, i.e. ε , is not too large. To compute ûr, we notice that it should

make xr follow the dynamics depicted in Fig. 1, i.e. ẋr = −xr(1− cur)+ ur with

ur = û defined in equation (7). We get that ûr should be computed from:

x′r =−
x2

r c

2+ xrc
= xr(1− c((1− ε)ûr + εum))− ûr ,

so that

ûr =
2xr(1+ xrc)

(1+(1− ε)xrc)(2+ xrc)
−

xrεcum

1+(1− ε)xrc
. (23)

Thus, the residents will be able to keep Sσ
r invariant provided ûr ∈ [0,1] for all points

belonging to Sσ
r and for all possible values of um ∈ [0,1].

To identify for which parameters of the model this is possible, we may notice

that ûr is a linear function of um and decreasing. Moreover,

ur(um = 0) =
2xr(1+ xrc)

(1+(1− ε)xrc)(2+ xrc)
≤ 2xr

1+ xrc

2+ xrc
≤ 1 ,
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since xr ≤ 1/2. Conversely, when um = 1, ur =
2xr

2+xrc

1+xrc−εc−εcxrc/2

1+(1−ε)xrc
. If this value

is larger than 0 for any xr belonging to Sσ
r , invariance of Sσ

r is ensured. A condition

for this to occur is

ε < 1/c. (24)

It is interesting to notice that ur(um = 0) is larger than the original û in (7), since the

residents must compensate for the non-eating mutants. Conversely, when um = 1,

ur < û. The tipping point takes place when um = û, which ensures ur = um; mutants

behaving like the original residents allow the residents to behave as such.

In this paper we consider only the values of ε satisfying (24), i.e. such that the

residents are able to adopt their optimal behavior, in spite of the presence of mu-

tants. Otherwise, the influence of the mutants on the system may be too large, and

the residents would not have the possibility to stick to their fitness maximization

program.

The control ûr = ûr(xr,xm,τ,um) is defined in feedback form, i.e. it depends on

the time and on the state of the system. The corresponding Hamiltonian (12) needs

to be modified to

Ĥ = H (xr,xm,Um,λr,λm,ν , ûr(xr,xm,τ,um),um), (25)

so that the coefficient multiplying the control um becomes

ˆAm =
∂Ĥ

∂um

=
λm(1+ xr(1− ε)c+ xmεc)− εcUm

1+(1− ε)xrc
− xm . (26)

This expression allows us to compute the optimal behavior of the mutants on the

surface Sσ
r , but the calculations are quite complicated. To make things simpler, let

us first consider the particular case of vanishingly small values of ε and study the

optimal behavioral pattern.

3.3 Particular case of a vanishingly small population of mutants

3.3.1 On the singular surface Sσ
r

If ε ∼= 0, the mutants’ influence on the system is negligible and, to make Sσ
r invariant,

the resident should apply the mutant-free singular behavior computed in (7): ûr =
2xr/(2+ xrc). In addition, equations (25) and (26) take the following form

Ĥ =−ν +
λrx

2
r c

2+ xrc
+λm

(

−xm

2− xrc

2+ xrc
+um

)

−Um

2xrc

2+ xrc
+ xm(1−um) (27)

ˆAm = λm − xm . (28)
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r

If the trajectory originates (in backward time) from some point belonging to Sσ
r

such that xσ
m

.
= xm(τ = log2)> 1/2, then um(τ = log2) = 0 and the system of char-

acteristics for the Hamiltonian (27) is

x′r =−
x2

r c

2+ xrc
, x′m = xm

2− xrc

2+ xrc
, λ ′

m =−λm +1 , U ′
m =−Um

2xrc

2+ xrc
+ xm (29)

with boundary conditions: τ = log2, xr = 1/2, xm = xσ
m, λm = 1/2, Um = x2

m/2. Thus

λm = 1−e−τ and there exists a switching curve Ŝ, which is defined as: xm = 1−e−τ

in addition to τ =− logxr +2/(xrc)−4/c. Thus Ŝ = Sm ∩Sσ
r .

The switching curve Ŝ ends at the point with coordinates (xr2
,xm2

,τ2) where

the characteristics become tangent to it and the singular arc Ŝσ appears (see Fig.

4). Before determining the coordinates of this point, let us define the singular arc,

denoted Ŝσ . From (27-28) we get

ν =
λrx

2
r c

2+ xrc
−λmxm

2− xrc

2+ xrc
−Um

2xrc

2+ xrc
+ xm, λm = xm (30)

along the singular arc. Substitution of (30) into equation ˆA ′
m = 0 gives xm = (2+

xrc)/4.

In addition, the intermediate control ûm can be derived from ˆA ′′
m = 0 and is equal

to

ûm =
1

2+ xrc
,

which is positive and belongs to the interval between zero and one.
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We see that the coordinates xr2
, xm2

and τ2 can be defined by the following equa-

tions

xm2
=

2+ xr2
c

4
= 1− e−τ2 , τ2 =− logxr2

+
2

xr2
c
−

4

c
,

which comes from the fact that the point (xr2
,xm2

,τ2) belongs to Ŝσ and is located

on the intersection of the curves Ŝσ and Ŝ. This result is illustrated in Fig. 4.

3.3.2 Outside the singular surface Sσ
r

If the state is outside the surface Sσ
r , things are a little easier since at least the behav-

ior of the residents, ur, is constant and equal to 0 or 1, depending on the respective

value of τ and xr.

We can actually show that the surface Sσ
1 (where ur = 0) can be extended further

by considering the situation in Fig. 3. Indeed, the following conditions are fulfilled

for this region:

H

∣

∣

∣

ur=0
=−ν −λrxr −λmxm + xm = 0, Am = λm − xm = 0, A

′
m = 0 .

Therefore, ν =−λrxr −λmxm+xm, λm = xm and the condition A ′
m = 0: −1+2xm =

0 gives xm = 1/2, which is precisely the definition of Sσ
1 when ε = 0 (see equation

(22)).

Consider now the region where xr is smaller than on the surface Sσ
r (see Fig. 4),

where ur = 1. There is a switching surface which extends the surface Sm and is
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defined by the same equation (14). However, there could also exist a singular arc Sσ
2

starting from some points of Sm. Such an arc must satisfy the following conditions

H

∣

∣

∣

ur=1
=−ν −λr(xr(1− c)−1)−λmxm(1− c)− zUm + xm = 0 (31)

Am = λm − xm = 0, A
′

m = 0, (32)

which give a possible candidate for a singular arc Sσ
2 : xm = 1/(2− c). We see that

its appearance is possible only for c < 1, since xm must belong to Sm. For c > 1

the structure of the solution in the domain below the surface Sσ
r is actually simpler

and consists only of the switching surface Sm, see Fig. 5. Notice that in the case

xr(0) = xm(0) = 0 investigated below, the existence of the singular arc Sσ
2 is not

relevant, since it cannot be reached from such initial conditions.

3.4 Computation of the value functions in the case ε = 0

Following [1], we assume that at the beginning of the season the energy of con-

sumers is zero: xr(0) = xm(0) = 0. Therefore, we should take into account only the

trajectories coming from these zero initial conditions. The phase space is reduced

in this case to the one shown in Fig. 6. One can see that there are three different

regions depending on the length of the season T . If it is short enough, i.e. T ≤ T1

(see equation (8)), then the behavior of the mutant coincides with the behavior of

the resident and the main population cannot be invaded: actually, the behavior of

the mutant coincides with the behavior of the residents. If the length of the season

is between T1 and T2, there is a period in the life-time of a resident when it applies

an intermediate strategy and spares some amount of the resource for its future use.

Mutants are able to use this fact and there exists a strategy that guarantees them

better results.

Let us introduce the analogue of the value function Ũm for the resident and denote

it by Ũr:

Ũr(pr, pm,n, t) =
∫ T

T−t
pr(s)(1−ur(s))ds .

The value Ũr(0,0,n(0),T ) represents the amount of eggs laid by the resident dur-

ing a season of length T . Its value depends on the state of the system and the fol-

lowing transformation can be done Ũr(pr, pm,n, t) = nUr(xr,xm, t). In the follow-

ing, we omit some parameters and write the value function in the simplified form

Ur(T )
.
=Ur(0,0,T ) where the initial conditions xr(0) = xm(0) = 0 have been taken

into account.

In the region A (see Fig. 6) the value functions for both populations (of mutants

and residents) are equal to each other Um(T ) =Ur(T ) = x1e−c(T−τ1). Here the value

τ1 can be defined from the intersection of the trajectory and the switching curve

Sr ∩Sm:
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1− e−τ1 =
e(c−1)(T−τ1)−1

c−1
.

To obtain the value functions in the regions B and C, one must solve the system

of characteristics (29) in the case when the characteristics move along the surface Sσ
r

and um = 1. This leads to the following characteristic equations for the Hamiltonian

(27):

x′r =−
x2

r c

2+ xrc
, x′m = xm

2− xrc

2+ xrc
−1, U ′

m =−Um

x2
r c

2+ xrc
,

and consequently

xm =C1x2
r eτ + xrz+1, Um =C2x2

r , C1,C2 = const , (33)

where C1 and C2 are defined from the boundary conditions, while equation (6) is

also fulfilled.

Along the singular arc Ŝσ the mutant uses the intermediate strategy (21). In this

case,

U ′
m =−Umcûr + xm(1− ũm) =−Um

2xrc

2+ xrc
+

1+ xrc

4
.

Since x′r =− x2
r c

2+xrc
, we have dUm

dxr
= 2Um

xr
− (1+xrc)(2+xrc)

4x2
r c

. Thus

Um =C3x2
r +

4+3xrc(3+2xrc)

24xrc
, C3 = const . (34)

We now undertake to compute the limiting season length T2 that separates the

region B from the region C. The coordinates of the point B were obtained in the

previous section. To define the coordinates of the point (xσ
r2
,xσ

m2
,τσ

2 ) of intersection

of the optimal trajectory with the curve AD, we use the dynamics of motion along the

surface Sσ
r with ur = ûr and um = 1 (33): xm =C1x2

r eτ +xrz+1, where the constant

C1 should be chosen such that: xm2
=C1x2

r2
eτ2 + xr2

c+1, xm2
=

2+xr2
c

4
= 1− e−τ2 .

Therefore C1 =
(xr2

c−2)(3xr2
c+2)

16x2
r2

. After that the coordinates: xσ
r2

, xσ
m2

and τσ
2 can be

defined from the following conditions

xσ
m2

= xσ
2 =C1(x

σ
r2
)2eτσ

2 + xσ
r2

c+1, τσ
2 =− logxσ

r2
+

2

xσ
r2

c
−

4

c
. (35)

The boundary value T2 can be obtained from T2 = τσ
2 + log(xσ

r2
(c−1)+1)/(c−1).

Now we compute the value functions Ur(T ) and Um(T ) for the region B (T1 <
T ≤ T2), where only the mutant uses bang-bang control. For the resident population

we have

Ur(T ) =Ur2
e−c(T−τ2), Ur2

= xr2
(1− xr2

)+
1−2xr2

c
, (36)

where the point with coordinates (xr2
,xr2

,τ2) defines the intersection of the trajec-

tory and surface Sσ
r :
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τ2 =− logxr2
+

2

xr2
c
−

4

c
, xr2

=
e(c−1)(T−τ2)−1

c−1
. (37)

For the mutant population the value function Um in the region with u = û and um = 1

satisfies the equation resulting from (33):

U
(û,1)
m = x2

m1
(xr/xr1

)2 , (38)

where (xr1
,xm1

,τ1) is the point of intersection of the trajectory with the curve AB

(see Fig. 6). Using (38) and notation from (37), we can write Um(T )=Um2
e−c(T−τ2),

Um2
= x2

m1
(xr2

/xr1
)2

, which is analogous to (36).

In the region C the value function for the resident has the same form as in (36),

but it has a different form for the mutant. Suppose that the optimal trajectory inter-

sects the surface Sσ at the point with coordinates (x̃r2
, x̃m2

, τ̃2). Then the Bellman

function at this point is given by

Ũm2
= x̃2

r2

(

c2

16
−

4+3x̃r2
c

24x̃3
r2

c

)

+
3x̃r2

c(2x̃r2
c+3)+4

24x̃r2
c

,

which is written using (34) with definition of the constant C3 from the given bound-

ary conditions.

When the optimal trajectory moving along the surface Sσ intersects the curve AD

at some point with coordinates (x̃σ
r2
, x̃σ

m2
, τ̃σ

2 ) (see Fig. 6), the Bellman function can

be expressed as follows: Ũσ
m2

= Ũm2
x̃σ

r2
/x̃r2

. Thus Um(T ) = Ũσ
m2

e−c(T−τσ
2 ).

The difference in the values functions (number of offspring per mature individ-

ual) of the mutant and optimally behaving resident is presented in Fig. 8. It is shown

that as soon as the season length is longer than T1, residents may be out-competed

by selfish ”free riding” mutants (see also Fig. 7). Let us notice, that otherwise the

payoff functions of the mutants and residents are the same. Therefore the optimal

strategy for the resident population is evolutionary stable.
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3.5 Generalization to sufficiently small but non-zero values of ε

In this section we consider the case of non-zero ε such that the condition (24) re-

mains fulfilled. This means that the trajectory intersecting the singular surface Sσ
r

does not cross it, but moves along it due to the residents who make it invariant

through the behavior ûr (23).

In this case, the phase space can also be divided into two regions: according to

whether xr is smaller or larger than on Sσ
r . In both of these regions the structure of

the solution has similar properties to the case considered above when ε is arbitrarily

small. On the surface Sσ
r the optimal behavior is also similar to that of the previous

case.

In the region with larger xr values than the ones on the surface Sσ
r , there is a

part of the switching surface Sm and a singular arc Sσ
1 where the mutant uses an

intermediate strategy. The surface Sσ
1 can be defined using the expression (22). In

the other region, we also have a part of Sm and a singular arc Sσ
2 which is different

from Sσ
1 and may not exist for some values of the parameters c and ε .

To identify the values for which the surface Sσ
2 is a part of the solution let us, write

the necessary conditions as in (31-32): H
∣

∣

ur=1
= 0, Am = 0, A ′

m = {AmH } = 0.

Using these equations, we are able to obtain the values of λr, λm and ν on the surface

Sσ
2 and substitute them into the second derivative A ′′

m = {{AmH }H }= 0 to derive

the expression for the singular control applied by the mutant on this surface:

um =
2xm − (1− ε)c(1+ xm)

2− (1− ε)c+ xmεc
. (39)

There are several conditions which must be satisfied. First of all, the control (39)

should be between zero and one

0 ≤
2xm − (1− ε)c(1+ xm)

2− (1− ε)c+ xmεc
≤ 1 . (40)

Second, the Kelley condition should also be fulfilled [11, p. 200]:

∂

∂um

d2

dt2

∂H

∂um

= {Am{AmH }} ≤ 0 .

This leads to the inequality

2− (1− ε)+ xmεc ≥ 0 . (41)

In particular, conditions (40) and (41) together give xm ≤ 2/(2− c).
To construct the singular arc Sσ

2 , we should substitute the singular control um

from (40) and ur = 1 into the equation describing the dynamics (13): x′m = xm(1−
c((1−ε)ur +εum))−um, with the boundary conditions obtained from the tangency

condition for the optimal trajectory from the domain um = ur = 1 intersecting the

switching surface Sm:
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xm

(

− log
(

1−
1

2− c(1− ε)

)

)

=
1

2− c(1− ε)
.

Such tangency occurs only if 0 ≤ 1
2−c(1−ε) ≤ 1, which that comes from the condi-

tion that a singular surface Sm exists only for 0 ≤ xm < 1. This gives the following

inequality: 1− c(1− ε)≥ 0 for the existence of the surface Sσ
2 . One can check that

the inequalities (40-41) are fulfilled as well. The optimal behavioral pattern for a

particular case is shown in Fig. 9.

4 Long-term evolution of the system

Model (2) was introduced in [1] as the intra-seasonal part of a more complex multi-

seasonal model of population dynamics in which consumers and resources live for

one season only. It was assumed that the (immature) offspring produced by the

consumers and resources in season i and defined by the system of equations (3),

mature during the inter-season to form the initial consumer and resource popu-

lations of season (i+ 1), up to some overwintering mortality. The consumer and

resource population densities at the beginning of season i+ 1 is thus ci+1 = µcJi,

ni+1(t = 0) = µnJn,i, with Ji and Jn,i defined in (3) (µn,µc < 1 allow for overwinter-

ing mortality).

In the presence of a mutant invasion, things differ slightly as the total consumer

population is structured into cri
= (1− εi)ci residents and cmi

= εici mutants that

have different reproduction strategies. Assuming that reproduction is asexual and

an offspring simply inherits the strategy of their parent, the inter-seasonal dynamics

are as follows: cri+1
=αŨr(ci,εi,ni,T ) = (1−εi+1)ci+1, cmi+1

=αŨm(ci,εi,ni,T ) =
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εi+1ci+1 and ni+1 = βṼ (ci,εi,ni,T ), where α = µcθ , β = µnγ , and the functions

Ũr =(1−εi)ci

∫ T
0 (1−ur(t))pr(t)dt, Ũm = εici

∫ T
0 (1−um(t))pm(t)dt, Ṽ =

∫ T
0 n(t)dt

can be computed from the solution of the optimal control problem (10) with the dy-

namics given by (9). As stated earlier, the energies of both the mutants and residents

are zero at the beginning of each season (pr(0) = pm(0) = 0). For the particular case

ε = 0, the values Ũr and Ũm were derived analytically in subsection 3.4, but these

are not useful in a multi-season study where the frequency of mutants is bound to

evolve. In the following, we therefore resorted to a numerical investigation, in order

to decipher the long-term fate of the mutants’ invasion.

Here, we follow an adaptive dynamics type approach and assume that, among

all possible behaviors [1], the resident consumer and the resource population are

at a (globally stable) equilibrium. We investigate what happens when a small frac-

tion of mutants appear in the resident consumer population. We actually assume

that resident consumers are “naive” in the sense that even if the mutant population

becomes large through the season-to-season reproduction process, the resident con-

sumers keep their collective optimal strategy and treat mutants as cooperators, even

if they do not cooperate.

The case that we investigated is characterized by α = 2, β = 0.5 and T = 4.

Initially, the system is near the all-residents long-term stable equilibrium point c =
0.9055 and n = 1.0848. At the beginning of some season, a mutant population of

small size cm = 0.001 then appears (ε ≈ 1.1 10−3 < 1/c). We see in Fig. 10 that

the mutant population increases its frequency within the consumer population and

modifies the dynamics of the system. Despite this drastic increase, it is however

noteworthy to underline that ci < 1 in all seasons, so that ε < 1/ci is true verified

and the analysis presented in this paper is valid for all seasons.

The naive behavior of the consumers is detrimental to their progeny: as the sea-

sons pass, mutant consumers progressively take the place of the collectively optimal

residents and even replace them in the long run (Fig. 10), making the mutation suc-
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cessful. We should however point out that the mutants’ strategy, as described in (10),

is also a kind of “collective” optimum: in some sense, it is assumed that mutants co-

operate with other mutants. If the course of evolution drives the resident population

to 0 and only mutants survive in the long run, this means that the former mutants be-

come the new residents, with exactly the same strategy as the one of the former resi-

dents they replaced. Hence, they are also prone to being invaded by non-cooperating

mutants. The evolutionary dynamics of this naive resident-selfish mutant-resource

thus appears to be a never-ending process: selfish mutants can invade and replace

collectively optimal consumers, but at the end transform into collectively optimal

consumers as well, and a new selfish mutant invasion can start again. We are actu-

ally not in a “Red Queen Dynamics” context, since we focused on the evolution of

one species only, and not co-evolution [18]. Yet, what the Red Queen said to Alice

seems to fit the situation we have just described very well: “here, you see, it takes

all the running you can do to keep in the same place” [5].
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