16,103 research outputs found

    External forward shock origin of high energy emission for three GRBs detected by Fermi

    Full text link
    We analyze the >100MeV data for 3 GRBs detected by Fermi (GRBs 080916C, 090510, 090902B) and find that these photons were generated via synchrotron emission in the external forward shock. We arrive at this conclusion by four different methods as follows. (1) We check the light curve and spectral behavior of the >100MeV data, and late time X-ray and optical data, and find them consistent with the closure relations for the external forward shock radiation. (2) We calculate the expected external forward shock synchrotron flux at 100MeV, and it matches the observed flux value. (3) We determine the external forward shock model parameters using the >100MeV data, and with these we calculate the expected X-ray and optical fluxes at late times (hours to days after the burst) and find these to be in good agreement with the observed data. (4) We calculate the external forward shock model parameters using only the late time X-ray, optical and radio data and from these estimate the expected flux at >100 MeV at the end of the sub-MeV burst (and at subsequent times) and find that to be entirely consistent with the high energy data obtained by Fermi/LAT. The ability of a simple external forward shock, to fit the entire data from the end of the burst (1-50s) to about a week, covering more than eight-decades in photon frequency provides compelling confirmation of the external forward shock synchrotron origin of the >100MeV radiation from these Fermi GRBs. Moreover, the parameters determined in points (3) and (4) show that the magnetic field required in these GRBs is consistent with shock-compressed magnetic field in the circum-stellar medium with pre-shocked values of a few tens of micro-Gauss.Comment: 12 pages, 7 figures, 2 tables. Accepted for publication in MNRAS. Analytical estimates include

    The 3-dimensional random walk with applications to overstretched DNA and the protein titin

    Full text link
    We study the three-dimensional persistent random walk with drift. Then we develop a thermodynamic model that is based on this random walk without assuming the Boltzmann-Gibbs form for the equilibrium distribution. The simplicity of the model allows us to perform all calculations in closed form. We show that, despite its simplicity, the model can be used to describe different polymer stretching experiments. We study the reversible overstretching transition of DNA and the static force-extension relation of the protein titin.Comment: 9 pages, 10 figure

    Distances in random graphs with finite variance degrees

    Full text link
    In this paper we study a random graph with NN nodes, where node jj has degree DjD_j and {Dj}j=1N\{D_j\}_{j=1}^N are i.i.d. with \prob(D_j\leq x)=F(x). We assume that 1F(x)cxτ+11-F(x)\leq c x^{-\tau+1} for some τ>3\tau>3 and some constant c>0c>0. This graph model is a variant of the so-called configuration model, and includes heavy tail degrees with finite variance. The minimal number of edges between two arbitrary connected nodes, also known as the graph distance or the hopcount, is investigated when NN\to \infty. We prove that the graph distance grows like logνN\log_{\nu}N, when the base of the logarithm equals \nu=\expec[D_j(D_j -1)]/\expec[D_j]>1. This confirms the heuristic argument of Newman, Strogatz and Watts \cite{NSW00}. In addition, the random fluctuations around this asymptotic mean logνN\log_{\nu}{N} are characterized and shown to be uniformly bounded. In particular, we show convergence in distribution of the centered graph distance along exponentially growing subsequences.Comment: 40 pages, 2 figure

    Managing Supply Chain Events to Build Sense-and-Respond Capability

    Get PDF
    As supply chains become more dynamic, there is a need for a sense-and-respond capability to react to events in a real-time manner. In this paper, we propose Petri nets extended with time and color (for case data) as a formalism for doing so. Hence, we describe seven basic patterns that are used to capture modeling concepts that arise commonly in supply chains. These basic patterns may be used by themselves and also be combined to create new patterns. Next, we show how to use the patterns as building blocks to model a complete supply chain and analyze it using dependency graphs and simulation. Dependency graphs can be used to analyze the various events and their causes. Simulation was, in addition, used to analyze various performance indicators (e.g. fill rates, replenishment times, and lead times) under different supply chain strategies. We performed sensitivity analysis to study the effect of changing parameter values on the performance indicators. In the experiments, by cutting resolution time for production delays in half (strategy 1), we were able to increase order fill rate from 89% to 95%. Similarly, upon raising the probability of successful alternative sourcing (strategy 2) from 0.5 to 0.7 the order fill rate again increased from 89% to 95%. We show that by modeling timing and causality issues accurately, it is possible to improve supply chain performance

    Effect of long-range Coulomb interaction on shot-noise suppression in ballistic transport

    Get PDF
    We present a microscopic analysis of shot-noise suppression due to long-range Coulomb interaction in semiconductor devices under ballistic transport conditions. An ensemble Monte Carlo simulator self-consistently coupled with a Poisson solver is used for the calculations. A wide range of injection-rate densities leading to different degrees of suppression is investigated. A sharp tendency of noise suppression at increasing injection densities is found to scale with a dimensionless Debye length related to the importance of space-charge effects in the structure.Comment: RevTex, 4 pages, 4 figures, minor correction

    Structural phase transition and material properties of few-layer monochalcogenides

    Full text link
    GeSe and SnSe monochalcogenide monolayers and bilayers undergo a two-dimensional phase transition from a rectangular unit cell to a square unit cell at a temperature TcT_c well below the melting point. Its consequences on material properties are studied within the framework of Car-Parrinello molecular dynamics and density-functional theory. No in-gap states develop as the structural transition takes place, so that these phase-change materials remain semiconducting below and above TcT_c. As the in-plane lattice transforms from a rectangle onto a square at TcT_c, the electronic, spin, optical, and piezo-electric properties dramatically depart from earlier predictions. Indeed, the YY- and XX-points in the Brillouin zone become effectively equivalent at TcT_c, leading to a symmetric electronic structure. The spin polarization at the conduction valley edge vanishes, and the hole conductivity must display an anomalous thermal increase at TcT_c. The linear optical absorption band edge must change its polarization as well, making this structural and electronic evolution verifiable by optical means. Much excitement has been drawn by theoretical predictions of giant piezo-electricity and ferroelectricity in these materials, and we estimate a pyroelectric response of about 3×10123\times 10^{-12} C/KmC/K m here. These results uncover the fundamental role of temperature as a control knob for the physical properties of few-layer group-IV monochalcogenidesComment: Supplementary information included. Published versio

    Overview of the EU FP7-project HISTORIC

    Get PDF
    HISTORIC aims to develop and test complex photonic integrated circuits containing a relatively large number of digital photonic elements for use in e.g. all-optical packet switching. These photonic digital units are all-optical flip-flops based on ultra compact laser diodes, such as microdisk lasers and photonic crystal lasers. These lasers are fabricated making use of the heterogeneous integration of InP membranes on top of silicon on insulator (SOI) passive optical circuits. The very small dimensions of the lasers are, at least for some approaches, possible because of the high index contrast of the InP membranes and by making use of the extreme accuracy of CMOS processing. All-optical flip-flops based on heterogeneously integrated microdisk lasers with diameter of 7.5 mu m have already been demonstrated. They operate with a CW power consumption of a few mW and can switch in 60ps with switching energies as low as 1.8 fJ. Their operation as all-optical gate has also been demonstrated. Work is also on-going to fabricate heterogeneously integrated photonic crystal lasers and all-optical flip-flops based on such lasers. A lot of attention is given to the electrical pumping of the membrane InP-based photonic crystal lasers and to the coupling to SOI wire waveguides. Optically pumped photonic crystal lasers coupled to SOI wires have been demonstrated already. The all-optical flip-flops and gates will be combined into more complex photonic integrated circuits, implementing all-optical shift registers, D flip-flops, and other all-optical switching building blocks. The possibility to integrate a large number of photonic digital units together, but also to integrate them with compact passive optical routers such as AWGs, opens new perspectives for the design of integrated optical processors or optical buffers. The project therefore also focuses on designing new architectures for such optical processing or buffer chips
    corecore