2,016 research outputs found

    Assessment of CO2 bubble generation influence on direct methanol fuel cell performance

    Get PDF
    Fuel cells fed directly by liquid methanol represent a class of suitable devices for supply portable small power applications. To become a market attractive technology some issues must be properly addressed and resolved. The presence of gaseous CO2 generated in the anode channels is the main issue as it can hinder the free surface of the Gas Diffusion Layer reducing the active area and the methanol flux through the porous media towards the catalyst layer. In this work the influence of gas phase fraction on the cell performance and the relationship with the operating parameters such as air flow rate, methanol-water solution flow rate and current density is investigated. The characterization of CO2 bubbles flow in the anode channel is carried out

    Comparison between 1-D and grey-box models of a SOFC

    Get PDF
    Solid Oxide Fuel Cells (SOFCs) have shown unique performance in terms of greater electrical efficiency and thermochemical integrity with the power systems compared to gas turbines and internal combustion engines. Nonetheless, simple and reliable models still must be defined. In this paper, a comparison between a grey-box model and a 1-D model of a SOFC is performed to understand the impact of the heat transfer inside the cell on the internal temperature distribution of the solid electrolyte. Hence, a significant internal temperature peak of the solid electrolyte is observed for a known difference between anode and cathode inlet temperatures. Indeed, it highlights the difference between the 1-D model and the grey-box model regarding the thermal conditioning of the SOFC. Therefore, the results of this study can be used to investigate the reliability of the thermal results of box models in system-level simulations

    Development of Improved Passive Configurations of DMFC with Reduced Contact Resistance

    Get PDF
    Abstract The Direct Methanol Fuel Cell (DMFC) represents today an appropriate solution for powering portable applications and small electronic devices, due to: 1) its compactness, 2) the high power density when compared with batteries and 3) the facility in transporting proper quantities of fuel (generally a liquid mixture of methanol and water). In order to further reduce the DMFCs size, passive configurations without external pumps and auxiliary devices are actively studied. Oxygen is supplied from the surrounding air while methanol-water solution is stored into a built-in tank in contact with the gas diffusion layer (GDL) that is constantly kept wet. Such configurations have a lower current density, roughly around 10÷30 mA/cm2, when compared with active configuration (40÷80 mA/cm2). It is then important to improve the baseline performance (power and efficiency) of such cells by optimizing all system components. Here we aim at reducing the effects of the contact resistance between GDL and current collectors by carrying out a sensitivity analysis on a number of relevant cells parameters such as:. assembly shape, gaskets, current collectors materials and open ratios. Analysis will be carried out at different molar concentrations (1 to 4 M) of the water-methanol solution used as fuel

    techno economic analysis of in situ production by electrolysis biomass gasification and delivery systems for hydrogen refuelling stations rome case study

    Get PDF
    Abstract Starting from the Rome Hydrogen Refuelling Station demand of 65 kg/day, techno-economics of production systems and balance of plant for small scale stations have been analysed. A sensitivity analysis has been done on Levelised Cost of Hydrogen (LCOH) in the range of 0 to 400 kg/day, varying capacity factor and availability hours or travel distance for alkaline electrolysers, biomass gasification and hydrogen delivery. As expected, minimum LCOH for electrolyser and gasifier is found at 400 kg/day and 24 h/day, equal to 12.71 €/kg and 5.99 €/kg however, for operating hours over 12 and 10 h/day the differential cost reaches a plateau (below 5%), for electrolyser and gasifier respectively. For the Rome station design, 160 kWe of electrolysers 24 h/day and 100 kWth gasifier at 8 h/day, LCOH (11.85 €/kg) was calculated considering the modification of the cost structure due to the existing equipment, which is convenient respect the use of a single technology, except for 24 h/day gasification

    Simulation analysis of an innovative micro-solar 2kWe Organic Rankine Cycle plant coupled with a multi-apartments building for domestic hot water supply

    Get PDF
    Combined heat and power plants driven by renewable energy sources (RES) are becoming more and more popular, given the energy transition towards the integration of more renewable energy sources in the power generation mix. In this paper an innovative micro-solar 2kWe/18kWth Organic Rankine Cycle system, which is being developed by the consortium of several Universities and industrial organizations, with the funding from EU under the Innova MicroSolar project, is considered. In particular, its application to supply electricity and thermal energy for Domestic Hot Water (DHW) in a residential building is investigated by means of simulation analysis. Different Domestic Hot Water supply plant configurations are evaluated and the design parameters are varied in order to determine the best configuration to recover as much energy as possible from the ORC, while maintaining the final users’ comfort. It was found out that with the considered plant around 67% of the Domestic Hot Water energy demand of 15 apartments can be satisfied with a water storage tank of 10’000 liters. However, in order to always guarantee the supply water temperature, a back-up boiler, which serves directly the final users when needed, is requested

    la responsibilità sciistica

    Get PDF
    In the context of the legal discipline of civil liability, the subject of continuous debate and evolution, this volume aims to provide a picture as complete as possible of ski liability by dealing with the different profiles of responsibility: managers of skiable areas, users, ski instructors, subjects involved in the organization of competitive events. This collection of conference proceedings, in addition to the contributions of the speakers, contains important works by scholars and experts in the field.; Nell’ambito della disciplina giuridica della responsabilità civile, oggetto di continuo dibattito ed evoluzione, il presente volume mira a fornire un quadro quanto più possibilmente completo della responsabilità sciistica trattando i diversi profili di responsabilità: dei gestori delle aree sciabili, degli utenti, dei maestri di sci, dei soggetti coinvolti nella organizzazione di eventi agonistici. Questa raccolta di atti di convegno, oltre ai contributi dei relatori, contiene importanti lavori di studiosi ed esperti della materia

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe
    corecore