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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 
Starting from the Rome Hydrogen Refuelling Station demand of 65 kg/day, techno-economics of production systems and balance 
of plant for small scale stations have been analysed. A sensitivity analysis has been done on Levelised Cost of Hydrogen (LCOH) 
in the range of 0 to 400 kg/day, varying capacity factor and availability hours or travel distance for alkaline electrolysers, 
biomass gasification and hydrogen delivery. As expected, minimum LCOH for electrolyser and gasifier is found at 400 kg/day 
and 24 h/day, equal to 12.71 €/kg and 5.99 €/kg however, for operating hours over 12 and 10 h/day the differential cost reaches a 
plateau (below 5%), for electrolyser and gasifier respectively. For the Rome station design, 160 kWe of electrolysers 24 h/day 
and 100 kWth gasifier at 8 h/day, LCOH (11.85 €/kg) was calculated considering the modification of the cost structure due to the 
existing equipment, which is convenient respect the use of a single technology, except for 24 h/day gasification.  
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1. Introduction 

In order to reduce greenhouse gas emissions and pollutions, Hydrogen Refuelling Stations “HRS” are developed 
worldwide. Hydrogen can store energy for long time and its combustion produces only water without causing 
environmental pollution [1]: moreover, increases in the price of oil have also added impetus to the movement 
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towards H2, and other alternative fuels. That is why the use of hydrogen as transport fuel can be helpful to solve 
storage and environmental problems. Although both hydrogen vehicles (fuel cell and internal combustion engine) 
and the related infrastructure have been (and are being) developed and some are commercially available, cost is seen 
as a major barrier. Given the current state of technology, H2 could only be competitive with petrol and diesel when 
produced in sufficiently large quantities, but at the same time a sufficiently large fleet of vehicles to create the 
necessary levels of demand is needed [2]. Although HRS infrastructure standard size is growing towards 400 kg/day 
[3–7] a small scale HRS is justifiable for geographical areas where the demand in hydrogen is small in order to 
provide a minor node [8]. Furthermore in low demand scenarios Simonnet [9] suggests that a small scale approach is 
more effective, thanks to the modularity of the electrolysers and for financial risk mitigation [9–11]. Furthermore the 
predictability of the demand (e.g. public transport fleets) is an additional risk mitigation factor [7,12], being able to 
control demand. The key aim of this paper is to compare and discuss the relative costs of H2 associated with various 
production–delivery pathways based on small scale H2 infrastructure in Rome as a case study, where an existing 
HRS must be upgraded and integrated to meet the demand of five 12 meters hydrogen buses. 

2. System boundary and assumptions  

The Rome HRS is designed to produce H2 from alkaline electrolysis and a biomass gasification, in alternative to 
delivered compressed hydrogen. Plant auxiliaries are accounted for at a global level. The lifetime of the station is set 
to 10 years. The system boundary is limited to the production system, the compression system, the storage system 
and the distribution system as represented in Fig. 1. The inputs are electricity, water and biomass. The only 
considered output is hydrogen for standard bus refuelling at 350 bar [10,12–14]. Each production method is 
evaluated through a system efficiency (%) which defined as the ratio between the HHVH2 and the required energy 
input to produce it [15]1. 

 

 
Figure 1 - system boundary 

 

 
 

Table 1. Hydrogen Properties and HRS demand 

Hydrogen Properties used 

ρH2 density [kg/Nm3] 0.0898 
HHVH2 [kWh/kg] 39.39 

HRS demand calculation [2,13,14,16] 
Bus route distance [km/(day*bus)] 130 
Daily refuelings [units] 1 
H2 consumption [km/kgH2]  10  
Daily HRS hydrogen demand Qd 
[kg/day]  

65 

The cost assessment is performed via Levelised Cost of Hydrogen “LCOH” (€/kg) [2,12,17–19] calculated as the 
sum of annualized equipment CAPEX (interest rate i=7% [20,21]) and OPEX (per hydrogen production [2]), 
according to the actual component’s working hours over the lifetime, divided by the total hydrogen produced (kg). 
Integration costs (Tab. 8) have been considered as a fixed percentage of the total CAPEX costs.  

3. Production systems  

3.1. Water electrolysis 

In this study we considered alkaline electrolyser, to match the existing one. An electrical substation is assumed to 
be available close to the HRS in order to provide suitable voltage and current. 

 

 
1 In Appendix B of the HHV justification is detailed for electrolysis, and is extended to biomass gasification, since the input is liquid water. 
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1 In Appendix B of the HHV justification is detailed for electrolysis, and is extended to biomass gasification, since the input is liquid water. 
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Table 2. Electrolyser data verified with [2,16,18,22–24] 

Parameter value 
Ce Electrical Consumption2 [kWh/ Nm3] 5.2 
Caux auxiliary consumption [kWh/ Nm3] 10% Ce 
Water stoichiometric consumption [l / Nm3 H2] 0.85 

 

        Table 3. Electrolyser energy parameters [4,6,10,14–16,22–26] 
Parameter Equation (n°) 

Efficiency (%) 𝜂𝜂𝑒𝑒 = 𝜌𝜌𝐻𝐻2∗𝐻𝐻𝐻𝐻𝑉𝑉𝐻𝐻2
𝐶𝐶𝑒𝑒

                                  (1) 

Installed Power (kWe) 𝑃𝑃𝑒𝑒  = (𝑄𝑄ℎ ∗ 𝑐𝑐. 𝑓𝑓.𝑒𝑒 ) ∗ 𝐶𝐶𝑒𝑒 ∗ (24
ℎ𝑒𝑒

)           (2) 
 

Where Qh is the volumetric hourly demand of hydrogen [Nm3/h], c.f.e is the electrolyser capacity factor (%) as 
the percent of daily demand met, Ce is the specific electrical consumption (kWh/ Nm3) and he the daily availability 
(h/day). 

ηe, as defined above, is constant and equal to 68% and 61.7%, excluding and including auxiliary consumption. 
This is aligned with literature values for small scale alkaline electrolyser plants, referenced in Tab 3.  

The electrolyser system specific CAPEX is around 4 k€/kW, derived from quotations and aligned with reference 
small scale figures (referenced in Tab 4). We have not considered scaling factors on electrolyser CAPEX which 
usually starts for sizes over 1.5 MW, not generally suitable for small scale locally producing HRS. Additional costs 
for auxiliary and cooling systems are quite marginal for system analysis and are included in the electrolyser 
CAPEX. LV grid connection costs4 are 70 €/kW. 

Table 4. Electrolyser OPEX (ARERA 2018; ACEA 2018; quotations) [1,7,12,19,24,26,27] 
item type [h/week]  Cost  [€/kWh]; [€/l]; [%] 
Grid Electricity (Italy)5 T1 (peak) 55  0.08255 
 T2 (intermediate) 41 0.08014 
 T3(off-peak) 72 0.06739 
Tap Water  Fixed 168 0.00526 
O&M Alkaline electrolyser % over CAPEX Depending on electrolyser operation hours (5% CAPEX )/year 

Only energy quota has been considered in order to compare results with other studies [10,14,26,28]. Water 
consumption is quite marginal respect to the electricity input for the electrolysis. O&M costs are considered over the 
actual availability hours of the electrolysers, where in the calculations a “maintenance year” corresponds to 8760 
hours of continuous operation. The O&M percentage results higher than the gasifier since it includes cell 
replacement at the end of its lifetime. 

3.2. Biomass gasification 
We considered an indirect fluidized bed (steam in gasifier, air in the combustor) gasifier coupled with a Water 

Gas Shift (WGS) reactor and Pressure Swing Adsorbtion (PSA) system, and electrical auxiliaries [22,29]. The 
system is available for the HRS from the European project UNIFY. 

The gasification data used in this analysis are taken from Pallozzi [30] and are shown in table 5.  

Table 5 Operating conditions of gasifier (UNIFHY project) [30] 
 Parameter                   Value  Electrical consumptions kWe in    

1MWth plant 
kWe in 
100kWth plant 

Steam to Biomass (S/B) ratio 1 kgsteam/kgbiomass  Water pump Negligible Negligible 
Hydrogen yield 67 g/kgbiomass dry  PSA compressor 44 4.4 
Hydrogen pressure out PSA 3 bar     
Biomass HHVbiomass,dry  5.42 kWh/kg   Total 70 7 
Parameter Equation (n°) 
Gasifier Efficiency (%) 𝜂𝜂𝑔𝑔 = 𝑄𝑄𝑔𝑔∗𝜌𝜌𝐻𝐻2∗𝐻𝐻𝐻𝐻𝑉𝑉𝐻𝐻2

𝑀̇𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗𝐻𝐻𝐻𝐻𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑑𝑑
  (3) 

Total gasifier  specific energy consumption 
(kWh/Nm3

H2) 
𝐶𝐶𝑔𝑔 =  𝑀̇𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗ 𝐻𝐻𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑄𝑄𝑔𝑔
+  𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎

𝜂𝜂𝑎𝑎𝑎𝑎𝑎𝑎∗𝑄𝑄𝑔𝑔
= 𝐶𝐶𝑔𝑔𝑏𝑏 + 𝐶𝐶𝑔𝑔𝑒𝑒  (4) 

Installed power gasifier (kWth) 𝑃𝑃𝑔𝑔 = 𝑀̇𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∗ 𝐻𝐻𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  (5) 

 

 
2 Real electrolyser consumption has been considered for PIEL model Quindicimila, courtesy of A.G.T. Considering fixed output pressure and electrolyte temperature 
(3 bar and 75°C) and proportional auxiliary consumption the thermodynamic and system efficiency can be considered constant with flow rate. 
3 We note that without electrolyte cooling systems, Qh,max can be limited respect to Qh,nom if continuous operation is required. 
4 ARERA “Non-domestic clients for installed power >16,5 kW” tables 2018 
5 All systems are considered able to prioritize the electricity consumptions time windows, in case of discontinuous operation. 
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Where HHVbiomass is in (kWh/kg) of the chosen biomass, in this case nutshell, Mbiomass the biomass flow rate 
(kg/h) and Qg (Nm3/h) is given by the capacity factor c.f.g (%) and availability (h/day) of the gasifier by the 
hydrogen yield. Each set of parameters corresponds to a gasifier nominal power (kWth) calculated with (5) on 
Mbiomass. The hydrogen efficiency, equal to 48.7% and 45.5% excluding and including auxiliaries respectively, is 
comparable to state of art figures [16,31–34]. 

Cost analysis for the biomass gasification plant components is taken from [21] which provides an extensive 
techno-economic analysis and scaling factors for different configurations: 

 
𝑆𝑆𝑆𝑆 = 𝑅𝑅𝑅𝑅 ∗ (𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅)

𝑒𝑒𝑒𝑒𝑒𝑒
;  

 SC: Scaled cost for each component 
 exp: Exponent [35] 
 RC: Reference costs [21] 
 SP: Scaling parameter (kWth considered) 
 RP: Reference Parameter (kWth reference) 

 

Table 6. Gasifier OPEX [20,21] 

Item Cost 
Biomass cost 60 €/ton 6 
Tap Water 0.00481 €/litre 
O&M Gasifier (2% over CAPEX)/ year 

 
(6) 

 

 
Figure 2 - gasifier CAPEX costs vs. size (kWth) 

 
In Fig. 2 biomass gasification plant CAPEX (mainly composed by gasifier, WGS and PSA) and specific CAPEX 

are reported in function of input size from 100 to 600 kWth. A different slope in specific CAPEX is observed for 
different sizes. The obtained costs are lower respect to small scale biomass plants - between 5÷10 k€/kWth quoted 
in [36] – but are higher respect to the costs reported by [37], considering differences in scale. 

Auto-production of electricity by burning syngas in an ICE, considering 100 kWth gasifier parameters, leads to 
an electricity price OPEX of approximately 85÷90 €/MWhe (ICE ηel=25.3% [38]), which is comparable to electricity 
from the grid. Therefore, does not introduce a relevant advantage. In addition, adding the ICE CAPEX and 
increasing the overall complexity of the HRS (3 systems are present at the same time) is generally less convenient. 
Auto-production can become a favourable option in case of expensive electricity and/or cheap biomass. 

3.3. Delivery 
Compressed hydrogen is supplied by trucks or tube trailer at 200 bar – standard pressure for hydrogen delivery 

[7,10,39,40]. An average flow rate way is defined over the period of deliveries. The recompression up to 400 bar is 
included in the compressor consumption described below7.  

Table 7. Hydrogen delivery parameters and costs 
Parameters for a single delivery @200 bar [quotations] Trucks Tube Trailer  [24] 

Configuration 90 x 50 litre  20.000 litre  
Stored quantity (Nm3; kg) 900; 80.9 4000; 359.2 

CAPEX [7,12,41] – fixed with delivery frequency 
HRS modifications (civil works)  [14,28] 10,000 € 100,000 € 
Gas connection system 5,000 € 10,000 € 

OPEX [24,42] 
H2 retail cost 10 €/kg 7,50 €/kg 
Vehicle leasing cost for availability 800 €/(month*vehicle) 2,150 €/(month*vehicle) 
Transport reference cost8 0,296 €/km + 20% profit 0,423 €/km + 20% profit 

 

 
6 biomass cost is considered constant in time and not suffering seasonal variability. In fact, a variation of 300% the biomass cost is less relevant respect to the variation 
of the CAPEX, increasing the final cost only by 10÷20% according to availability hours. Transport cost is shadowed into the biomass cost. 
7 This is a conservative approach since delivered hydrogen could be directly used for cascade refueling at low initial vehicle refueling pressures, leading to energy and 
cost savings. 
8 Cost calculated for by Italian Ministry of Infrastructure and Transport with diesel cost (2011) in Italy based on 15t and 40t trucks respectively. 



	 Monforti Ferrario Andrea  et al. / Energy Procedia 148 (2018) 82–89� 85
 Monforti Ferrario et al. / Energy Procedia 00 (2018) 000–000  3 

 
Table 2. Electrolyser data verified with [2,16,18,22–24] 

Parameter value 
Ce Electrical Consumption2 [kWh/ Nm3] 5.2 
Caux auxiliary consumption [kWh/ Nm3] 10% Ce 
Water stoichiometric consumption [l / Nm3 H2] 0.85 

 

        Table 3. Electrolyser energy parameters [4,6,10,14–16,22–26] 
Parameter Equation (n°) 

Efficiency (%) 𝜂𝜂𝑒𝑒 = 𝜌𝜌𝐻𝐻2∗𝐻𝐻𝐻𝐻𝑉𝑉𝐻𝐻2
𝐶𝐶𝑒𝑒

                                  (1) 

Installed Power (kWe) 𝑃𝑃𝑒𝑒  = (𝑄𝑄ℎ ∗ 𝑐𝑐. 𝑓𝑓.𝑒𝑒 ) ∗ 𝐶𝐶𝑒𝑒 ∗ (24
ℎ𝑒𝑒

)           (2) 
 

Where Qh is the volumetric hourly demand of hydrogen [Nm3/h], c.f.e is the electrolyser capacity factor (%) as 
the percent of daily demand met, Ce is the specific electrical consumption (kWh/ Nm3) and he the daily availability 
(h/day). 

ηe, as defined above, is constant and equal to 68% and 61.7%, excluding and including auxiliary consumption. 
This is aligned with literature values for small scale alkaline electrolyser plants, referenced in Tab 3.  

The electrolyser system specific CAPEX is around 4 k€/kW, derived from quotations and aligned with reference 
small scale figures (referenced in Tab 4). We have not considered scaling factors on electrolyser CAPEX which 
usually starts for sizes over 1.5 MW, not generally suitable for small scale locally producing HRS. Additional costs 
for auxiliary and cooling systems are quite marginal for system analysis and are included in the electrolyser 
CAPEX. LV grid connection costs4 are 70 €/kW. 

Table 4. Electrolyser OPEX (ARERA 2018; ACEA 2018; quotations) [1,7,12,19,24,26,27] 
item type [h/week]  Cost  [€/kWh]; [€/l]; [%] 
Grid Electricity (Italy)5 T1 (peak) 55  0.08255 
 T2 (intermediate) 41 0.08014 
 T3(off-peak) 72 0.06739 
Tap Water  Fixed 168 0.00526 
O&M Alkaline electrolyser % over CAPEX Depending on electrolyser operation hours (5% CAPEX )/year 

Only energy quota has been considered in order to compare results with other studies [10,14,26,28]. Water 
consumption is quite marginal respect to the electricity input for the electrolysis. O&M costs are considered over the 
actual availability hours of the electrolysers, where in the calculations a “maintenance year” corresponds to 8760 
hours of continuous operation. The O&M percentage results higher than the gasifier since it includes cell 
replacement at the end of its lifetime. 

3.2. Biomass gasification 
We considered an indirect fluidized bed (steam in gasifier, air in the combustor) gasifier coupled with a Water 

Gas Shift (WGS) reactor and Pressure Swing Adsorbtion (PSA) system, and electrical auxiliaries [22,29]. The 
system is available for the HRS from the European project UNIFY. 

The gasification data used in this analysis are taken from Pallozzi [30] and are shown in table 5.  

Table 5 Operating conditions of gasifier (UNIFHY project) [30] 
 Parameter                   Value  Electrical consumptions kWe in    

1MWth plant 
kWe in 
100kWth plant 

Steam to Biomass (S/B) ratio 1 kgsteam/kgbiomass  Water pump Negligible Negligible 
Hydrogen yield 67 g/kgbiomass dry  PSA compressor 44 4.4 
Hydrogen pressure out PSA 3 bar     
Biomass HHVbiomass,dry  5.42 kWh/kg   Total 70 7 
Parameter Equation (n°) 
Gasifier Efficiency (%) 𝜂𝜂𝑔𝑔 = 𝑄𝑄𝑔𝑔∗𝜌𝜌𝐻𝐻2∗𝐻𝐻𝐻𝐻𝑉𝑉𝐻𝐻2

𝑀̇𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗𝐻𝐻𝐻𝐻𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑑𝑑𝑑𝑑𝑑𝑑
  (3) 

Total gasifier  specific energy consumption 
(kWh/Nm3

H2) 
𝐶𝐶𝑔𝑔 =  𝑀̇𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗ 𝐻𝐻𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑄𝑄𝑔𝑔
+  𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎

𝜂𝜂𝑎𝑎𝑎𝑎𝑎𝑎∗𝑄𝑄𝑔𝑔
= 𝐶𝐶𝑔𝑔𝑏𝑏 + 𝐶𝐶𝑔𝑔𝑒𝑒  (4) 

Installed power gasifier (kWth) 𝑃𝑃𝑔𝑔 = 𝑀̇𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∗ 𝐻𝐻𝐻𝐻𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  (5) 

 

 
2 Real electrolyser consumption has been considered for PIEL model Quindicimila, courtesy of A.G.T. Considering fixed output pressure and electrolyte temperature 
(3 bar and 75°C) and proportional auxiliary consumption the thermodynamic and system efficiency can be considered constant with flow rate. 
3 We note that without electrolyte cooling systems, Qh,max can be limited respect to Qh,nom if continuous operation is required. 
4 ARERA “Non-domestic clients for installed power >16,5 kW” tables 2018 
5 All systems are considered able to prioritize the electricity consumptions time windows, in case of discontinuous operation. 
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Where HHVbiomass is in (kWh/kg) of the chosen biomass, in this case nutshell, Mbiomass the biomass flow rate 
(kg/h) and Qg (Nm3/h) is given by the capacity factor c.f.g (%) and availability (h/day) of the gasifier by the 
hydrogen yield. Each set of parameters corresponds to a gasifier nominal power (kWth) calculated with (5) on 
Mbiomass. The hydrogen efficiency, equal to 48.7% and 45.5% excluding and including auxiliaries respectively, is 
comparable to state of art figures [16,31–34]. 

Cost analysis for the biomass gasification plant components is taken from [21] which provides an extensive 
techno-economic analysis and scaling factors for different configurations: 

 
𝑆𝑆𝑆𝑆 = 𝑅𝑅𝑅𝑅 ∗ (𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅)

𝑒𝑒𝑒𝑒𝑒𝑒
;  

 SC: Scaled cost for each component 
 exp: Exponent [35] 
 RC: Reference costs [21] 
 SP: Scaling parameter (kWth considered) 
 RP: Reference Parameter (kWth reference) 

 

Table 6. Gasifier OPEX [20,21] 

Item Cost 
Biomass cost 60 €/ton 6 
Tap Water 0.00481 €/litre 
O&M Gasifier (2% over CAPEX)/ year 

 
(6) 

 

 
Figure 2 - gasifier CAPEX costs vs. size (kWth) 

 
In Fig. 2 biomass gasification plant CAPEX (mainly composed by gasifier, WGS and PSA) and specific CAPEX 

are reported in function of input size from 100 to 600 kWth. A different slope in specific CAPEX is observed for 
different sizes. The obtained costs are lower respect to small scale biomass plants - between 5÷10 k€/kWth quoted 
in [36] – but are higher respect to the costs reported by [37], considering differences in scale. 

Auto-production of electricity by burning syngas in an ICE, considering 100 kWth gasifier parameters, leads to 
an electricity price OPEX of approximately 85÷90 €/MWhe (ICE ηel=25.3% [38]), which is comparable to electricity 
from the grid. Therefore, does not introduce a relevant advantage. In addition, adding the ICE CAPEX and 
increasing the overall complexity of the HRS (3 systems are present at the same time) is generally less convenient. 
Auto-production can become a favourable option in case of expensive electricity and/or cheap biomass. 

3.3. Delivery 
Compressed hydrogen is supplied by trucks or tube trailer at 200 bar – standard pressure for hydrogen delivery 

[7,10,39,40]. An average flow rate way is defined over the period of deliveries. The recompression up to 400 bar is 
included in the compressor consumption described below7.  

Table 7. Hydrogen delivery parameters and costs 
Parameters for a single delivery @200 bar [quotations] Trucks Tube Trailer  [24] 

Configuration 90 x 50 litre  20.000 litre  
Stored quantity (Nm3; kg) 900; 80.9 4000; 359.2 

CAPEX [7,12,41] – fixed with delivery frequency 
HRS modifications (civil works)  [14,28] 10,000 € 100,000 € 
Gas connection system 5,000 € 10,000 € 

OPEX [24,42] 
H2 retail cost 10 €/kg 7,50 €/kg 
Vehicle leasing cost for availability 800 €/(month*vehicle) 2,150 €/(month*vehicle) 
Transport reference cost8 0,296 €/km + 20% profit 0,423 €/km + 20% profit 

 

 
6 biomass cost is considered constant in time and not suffering seasonal variability. In fact, a variation of 300% the biomass cost is less relevant respect to the variation 
of the CAPEX, increasing the final cost only by 10÷20% according to availability hours. Transport cost is shadowed into the biomass cost. 
7 This is a conservative approach since delivered hydrogen could be directly used for cascade refueling at low initial vehicle refueling pressures, leading to energy and 
cost savings. 
8 Cost calculated for by Italian Ministry of Infrastructure and Transport with diesel cost (2011) in Italy based on 15t and 40t trucks respectively. 
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4. Balance of plant 
Downstream the hydrogen production and auxiliary systems, the HRS Balance of Plant (BOP) is composed of the 

compressor, the storage and the dispenser systems and the integration components: 
Table 8. Balance of plant parameters 

 Compressor 
Reciprocating up to 400 bar 

Storage 
@400 bar 

Dispenser x1 
Fast filling – 350 

bar in FCB 

Integration 
(pipeline; electrical and 
civil works; permitting; 

financial) 

Plant auxiliary 24h/24 
(blowers, safety systems, 

lighting, etc.) 

Sizing criteria Maximum production flow 
rate 

1 day of storage 
[2,14,28,43,44] Demand (kg/day) - 

P=5% Ptot (kWe or 
kWth); minimum 

20kWe 

Energy 
Isoentropic transformation9 
ηcompression/motor=0.56 [7]  
20% of Cc intercooling 

- - - ηaux=0.97 

Cost [7,12,19,24,27,42];  quotations and estimates 
CAPEX (purchase 
and installation) 

7 k€/kWe incl. cooling system 
+ grid connection cost 

1,000 €/kgH2 

stored 500 €/(kg/day) 20% sum of total 
CAPEX 

200 €/kWe + grid 
connection cost 

OPEX 
electricity T1, T2, T3 reported in Tab.4 - - - T1, T2, T3 reported in 

Tab.4 
O&M 5 %CAPEX/year 1%CAPEX/year 10%CAPEX/year - 20%CAPEX/year10 

From an energy point of view the only active components are the compressor and the plant auxiliaries, since 
storage, dispenser and integration are passive components or in any case assumed to be included in the plant 
auxiliaries. 

5. Sensitivity analysis. Results and discussion. 
Sensitivity analysis has been performed on the LCOH (€/kg) varying two parameters for each technology 

separately. For electrolyser and gasifier, c.f. and availability (h/day) have been varied, from 0% to 625% respect to 
the defined demand (65 kg/day) – meaning from 0 to approximately 400 kg/day and from 0 to 24 (h/day); the 
gasifier option is more subject to sensitivity due to the scaling factors [21,45] respect to electrolysis. For trucks and 
tube trailer travel distance and delivery frequency have been varied from 25 to 500 km and from 25 to 400 kg/day, 
respectively. The sensitivity analysis considers the relationships between the production systems and the balance of 
plant. LCOH contour maps and the intersection of the sensitivity for 65 kg/day and differential cost curves 
(ΔLCOHi-1i/LCOHi-1 in orange) are represented for electrolysis and gasification in Fig. 3, while only contour maps 
are reported for delivery: 

a) 

 

b) 

 

 

 
9 Calculating adiabatic transformation is conservative since it is usually multi-staged with intercooling, following a more isothermal path whose compression work 
required is reduced. An equivalent p1eq is calculated to account for the decrease of pressure of the vessels with its’ discharge. 
10 24h/24 is another conservative assumption since some auxiliary systems operate in limited amounts of time [42].  
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c) 

 

d) 

 
e) 

 

f) 

 
Figure 3 – LCOH (€/kg) for a) electrolysis map; b) electrolysis 65 kg/day; c) gasifier map; d) gasifier 65 kg/day; e-f) delivery maps 

For electrolysis, LCOH is greatly influenced (up to 46% by increasing availability hours from 8 to 24 h/day) by 
the availability hours (Fig. 3b) benefiting the decrease of CAPEX cost for smaller electrolysers which is not 
balanced by electricity cost reduction in off-peak hours. The minimum LCOH is found for maximum c.f.e and 24 
h/day (12.71 €/kg) corresponding to a size of 981 kWe. However, a plateau region – where the differential cost 
becomes less than 5% - is already reached over 12 h/day, corresponding to 314 kWe. Inconvenience of oversizing 
electrolysers in small scale HRSs is also mentioned also by [11,12,19].  

For gasification, fig. 3c-d, both c.f.g and availability hours impact relevantly the LCOH, up to 68% and 40% 
respectively. The minimum LCOH is found for maximum c.f.g and 24 h/day, equals to 5.99 €/kg corresponding to 
the size of 1370 kWth. However, from the analysis of the differential cost the plateau regions, are reached for c.f.g 
over 175% corresponding to 384 kWth (24 h/day) and for over 10÷11 h/day in case of discontinuous operation.  

The delivery sensitivity, fig. 3e-f, shows that LCOH dependence on travel distance always favours shorter travel 
distances but is quite limited in impact, 15% and 7%, while scale affects LCOH up to 14% and 41%, for the trucks 
and trailer cases respectively. Minimum LCOH is found at 400 kg/day and 25 km for both delivery options. LCOH 
of trucks overcome that of trailers for a capacity of approximately 34 kg/day considering 100 and 250 km, 
respectively. In table 9 are reported the costs for each configuration at 65 and 400 kg/day. 

Table 9. LCOH results for 65 and 400 kg/day 
Item 65 kg/day LCOH (€/kgH2) 400 kg/day LCOH (€/kgH2) 

Electrolysis (24h/day) 13.32 12.71 
Biomass gasification (8 h/day) 15.70 9.93 
Biomass gasification (24 h/day) 9.72 5.99 
Delivery trucks (100 km) * 14.73 14.02 
Delivery trailer (250 km) * 13.05 10.83 
*the trucks refill in smaller production plants which are closer to the HRS respect to trailers’ refilling plants 
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4. Balance of plant 
Downstream the hydrogen production and auxiliary systems, the HRS Balance of Plant (BOP) is composed of the 

compressor, the storage and the dispenser systems and the integration components: 
Table 8. Balance of plant parameters 

 Compressor 
Reciprocating up to 400 bar 

Storage 
@400 bar 

Dispenser x1 
Fast filling – 350 

bar in FCB 

Integration 
(pipeline; electrical and 
civil works; permitting; 

financial) 

Plant auxiliary 24h/24 
(blowers, safety systems, 

lighting, etc.) 

Sizing criteria Maximum production flow 
rate 

1 day of storage 
[2,14,28,43,44] Demand (kg/day) - 

P=5% Ptot (kWe or 
kWth); minimum 

20kWe 

Energy 
Isoentropic transformation9 
ηcompression/motor=0.56 [7]  
20% of Cc intercooling 

- - - ηaux=0.97 

Cost [7,12,19,24,27,42];  quotations and estimates 
CAPEX (purchase 
and installation) 

7 k€/kWe incl. cooling system 
+ grid connection cost 

1,000 €/kgH2 

stored 500 €/(kg/day) 20% sum of total 
CAPEX 

200 €/kWe + grid 
connection cost 

OPEX 
electricity T1, T2, T3 reported in Tab.4 - - - T1, T2, T3 reported in 

Tab.4 
O&M 5 %CAPEX/year 1%CAPEX/year 10%CAPEX/year - 20%CAPEX/year10 

From an energy point of view the only active components are the compressor and the plant auxiliaries, since 
storage, dispenser and integration are passive components or in any case assumed to be included in the plant 
auxiliaries. 

5. Sensitivity analysis. Results and discussion. 
Sensitivity analysis has been performed on the LCOH (€/kg) varying two parameters for each technology 

separately. For electrolyser and gasifier, c.f. and availability (h/day) have been varied, from 0% to 625% respect to 
the defined demand (65 kg/day) – meaning from 0 to approximately 400 kg/day and from 0 to 24 (h/day); the 
gasifier option is more subject to sensitivity due to the scaling factors [21,45] respect to electrolysis. For trucks and 
tube trailer travel distance and delivery frequency have been varied from 25 to 500 km and from 25 to 400 kg/day, 
respectively. The sensitivity analysis considers the relationships between the production systems and the balance of 
plant. LCOH contour maps and the intersection of the sensitivity for 65 kg/day and differential cost curves 
(ΔLCOHi-1i/LCOHi-1 in orange) are represented for electrolysis and gasification in Fig. 3, while only contour maps 
are reported for delivery: 

a) 
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9 Calculating adiabatic transformation is conservative since it is usually multi-staged with intercooling, following a more isothermal path whose compression work 
required is reduced. An equivalent p1eq is calculated to account for the decrease of pressure of the vessels with its’ discharge. 
10 24h/24 is another conservative assumption since some auxiliary systems operate in limited amounts of time [42].  
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Figure 3 – LCOH (€/kg) for a) electrolysis map; b) electrolysis 65 kg/day; c) gasifier map; d) gasifier 65 kg/day; e-f) delivery maps 

For electrolysis, LCOH is greatly influenced (up to 46% by increasing availability hours from 8 to 24 h/day) by 
the availability hours (Fig. 3b) benefiting the decrease of CAPEX cost for smaller electrolysers which is not 
balanced by electricity cost reduction in off-peak hours. The minimum LCOH is found for maximum c.f.e and 24 
h/day (12.71 €/kg) corresponding to a size of 981 kWe. However, a plateau region – where the differential cost 
becomes less than 5% - is already reached over 12 h/day, corresponding to 314 kWe. Inconvenience of oversizing 
electrolysers in small scale HRSs is also mentioned also by [11,12,19].  

For gasification, fig. 3c-d, both c.f.g and availability hours impact relevantly the LCOH, up to 68% and 40% 
respectively. The minimum LCOH is found for maximum c.f.g and 24 h/day, equals to 5.99 €/kg corresponding to 
the size of 1370 kWth. However, from the analysis of the differential cost the plateau regions, are reached for c.f.g 
over 175% corresponding to 384 kWth (24 h/day) and for over 10÷11 h/day in case of discontinuous operation.  

The delivery sensitivity, fig. 3e-f, shows that LCOH dependence on travel distance always favours shorter travel 
distances but is quite limited in impact, 15% and 7%, while scale affects LCOH up to 14% and 41%, for the trucks 
and trailer cases respectively. Minimum LCOH is found at 400 kg/day and 25 km for both delivery options. LCOH 
of trucks overcome that of trailers for a capacity of approximately 34 kg/day considering 100 and 250 km, 
respectively. In table 9 are reported the costs for each configuration at 65 and 400 kg/day. 

Table 9. LCOH results for 65 and 400 kg/day 
Item 65 kg/day LCOH (€/kgH2) 400 kg/day LCOH (€/kgH2) 

Electrolysis (24h/day) 13.32 12.71 
Biomass gasification (8 h/day) 15.70 9.93 
Biomass gasification (24 h/day) 9.72 5.99 
Delivery trucks (100 km) * 14.73 14.02 
Delivery trailer (250 km) * 13.05 10.83 
*the trucks refill in smaller production plants which are closer to the HRS respect to trailers’ refilling plants 
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6. The Rome case study  
The analysis was applied to the Rome station considering refurbishment costs for 120 kWe electrolysers and 100 

kWth gasifier instead of purchase cost as in [14]. The gap with the demand is completed by a new 40 kWe alkaline 
electrolyser (for reliability issue) operating 24 h/day. The gasifier is foreseen to operate 8 h/day to reduce the OPEX. 

The LCOH sums to 11.85 €/kg, which is convenient respect to other options presented in Tab. 9, except for 
gasification 24 h/day, even considering a slight 15% oversizing for contingency issues as shown in figure 4.  
a) 

 

b) 

 
Figure 4 – Rome HRS a) hydrogen cost repartition and b) breakdown  

The following charts show the breakdown of the CAPEX and OPEX costs, where the most relevant costs are 
electricity cost (6.97 €/kg) and O&M (1.65 €/kg). Electrolyser CAPEX (1.30 €/kg) is relevantly lower than OPEX 
(7.50 €/kg) due to the extensive utilization of refurbished equipment. Importance of electricity cost and availability 
hours (size) is easily seen. 

7. Conclusions and perspectives 
The costs of small scale HRS (from around 65 kg/day), which implement locally producing systems – such as 

electrolysis and biomass gasification – are comparable to those for delivery solutions, therefore it makes sense to 
investigate real case consumptions and costs. 

1) With electricity cost ranging between 82.55 €/MWh and 67.39 €/MWh it is more convenient to increase 
operating hours of electrolysers rather than size. The opposite behaviour can be appreciated for electricity cost 
reduction over 50% between peak and off-peak hours, considering the same time windows (e.g. 0.18 c€/kWh peak 
and 0.08 c€/kWh off-peak). The minimum LCOH – for continuous operation and 400 kg/day– is 12.71 €/kg for 
around 1 MWe, but already at 12 h/day the differential cost plateau is reached.  

2) Although biomass gasification presents a lower energy efficiency (48.72 % vs. 68.02% of electrolysis, 
calculated on HHV excluding auxiliaries) the analysed technology is promising due to lower biomass costs, which is 
sensibly lower than electricity cost. The lowest LCOH is obtained at 1370 kWth for 400 kg/day and for 24 h/day 
(5.99 €/kg). Operating conditions at 10 h/day reach differential cost plateau.  

3) Delivery hydrogen is more convenient for smaller scales than the considered one with the considered retail 
price. Costs for 65 kg/day HRS capacity are comparable with locally producing ones. In case of tube trailers small 
scale cases suffer more than trucks from the higher CAPEX costs related to vehicle leasing and HRS civil works 
modifications. Trailers can potentially reach more convenient LCOH, up to 10.5 €/kg at 400 kg/day respect to trucks, 
which can only reach 13.67 €/kg. Trucks are more convenient respect to trailers below 34 kg/day for the considered 
travel distances.  

The Rome case study LCOH is 11.85 €/kg, thanks to the use of in kind. The use of electrolysers at 100% c.f.e and 
the implementation of the gasifier for 8 h/day are due to reliability issues, although 24 h/day gasification has the 
possibility to reduce further the LCOH.  

Large scale implementation of HRS and increase in the hydrogen demand for mobility would increase the 
capacity factor for HRSs at larger produced volumes, allowing to install more optimal sizes, reduce specific costs 
and reach competitive LCOH values. If the delivery hydrogen costs do not decrease sufficiently this will favour local 
production. 
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6. The Rome case study  
The analysis was applied to the Rome station considering refurbishment costs for 120 kWe electrolysers and 100 

kWth gasifier instead of purchase cost as in [14]. The gap with the demand is completed by a new 40 kWe alkaline 
electrolyser (for reliability issue) operating 24 h/day. The gasifier is foreseen to operate 8 h/day to reduce the OPEX. 

The LCOH sums to 11.85 €/kg, which is convenient respect to other options presented in Tab. 9, except for 
gasification 24 h/day, even considering a slight 15% oversizing for contingency issues as shown in figure 4.  
a) 

 

b) 

 
Figure 4 – Rome HRS a) hydrogen cost repartition and b) breakdown  

The following charts show the breakdown of the CAPEX and OPEX costs, where the most relevant costs are 
electricity cost (6.97 €/kg) and O&M (1.65 €/kg). Electrolyser CAPEX (1.30 €/kg) is relevantly lower than OPEX 
(7.50 €/kg) due to the extensive utilization of refurbished equipment. Importance of electricity cost and availability 
hours (size) is easily seen. 

7. Conclusions and perspectives 
The costs of small scale HRS (from around 65 kg/day), which implement locally producing systems – such as 

electrolysis and biomass gasification – are comparable to those for delivery solutions, therefore it makes sense to 
investigate real case consumptions and costs. 

1) With electricity cost ranging between 82.55 €/MWh and 67.39 €/MWh it is more convenient to increase 
operating hours of electrolysers rather than size. The opposite behaviour can be appreciated for electricity cost 
reduction over 50% between peak and off-peak hours, considering the same time windows (e.g. 0.18 c€/kWh peak 
and 0.08 c€/kWh off-peak). The minimum LCOH – for continuous operation and 400 kg/day– is 12.71 €/kg for 
around 1 MWe, but already at 12 h/day the differential cost plateau is reached.  

2) Although biomass gasification presents a lower energy efficiency (48.72 % vs. 68.02% of electrolysis, 
calculated on HHV excluding auxiliaries) the analysed technology is promising due to lower biomass costs, which is 
sensibly lower than electricity cost. The lowest LCOH is obtained at 1370 kWth for 400 kg/day and for 24 h/day 
(5.99 €/kg). Operating conditions at 10 h/day reach differential cost plateau.  

3) Delivery hydrogen is more convenient for smaller scales than the considered one with the considered retail 
price. Costs for 65 kg/day HRS capacity are comparable with locally producing ones. In case of tube trailers small 
scale cases suffer more than trucks from the higher CAPEX costs related to vehicle leasing and HRS civil works 
modifications. Trailers can potentially reach more convenient LCOH, up to 10.5 €/kg at 400 kg/day respect to trucks, 
which can only reach 13.67 €/kg. Trucks are more convenient respect to trailers below 34 kg/day for the considered 
travel distances.  

The Rome case study LCOH is 11.85 €/kg, thanks to the use of in kind. The use of electrolysers at 100% c.f.e and 
the implementation of the gasifier for 8 h/day are due to reliability issues, although 24 h/day gasification has the 
possibility to reduce further the LCOH.  

Large scale implementation of HRS and increase in the hydrogen demand for mobility would increase the 
capacity factor for HRSs at larger produced volumes, allowing to install more optimal sizes, reduce specific costs 
and reach competitive LCOH values. If the delivery hydrogen costs do not decrease sufficiently this will favour local 
production. 
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