482 research outputs found

    Modeling Dual Pathways for the Metazoan Spindle Assembly Checkpoint

    Get PDF
    Using computational modelling, we investigate mechanisms of signal transduction focusing on the spindle assembly checkpoint where a single unattached kinetochore is able to signal to prevent cell cycle progression. This inhibitory signal switches off rapidly once spindle microtubules have attached to all kinetochores. This requirement tightly constrains the possible mechanisms. Here we investigate two possible mechanisms for spindle checkpoint operation in metazoan cells, both supported by recent experiments. The first involves the free diffusion and sequestration of cell-cycle regulators. This mechanism is severely constrained both by experimental fluorescence recovery data and also by the large volumes involved in open mitosis in metazoan cells. Using a simple mathematical analysis and computer simulation, we find that this mechanism can generate the inhibition found in experiment but likely requires a two stage signal amplification cascade. The second mechanism involves spatial gradients of a short-lived inhibitory signal that propagates first by diffusion but then primarily via active transport along spindle microtubules. We propose that both mechanisms may be operative in the metazoan spindle assembly checkpoint, with either able to trigger anaphase onset even without support from the other pathway.Comment: 9 pages, 2 figure

    Induction of non-d-wave order-parameter components by currents in d-wave superconductors

    Full text link
    It is shown, within the framework of the Ginzburg-Landau theory for a superconductor with d_{x^2-y^2} symmetry, that the passing of a supercurrent through the sample results, in general, in the induction of order-parameter components of distinct symmetry. The induction of s-wave and d_{xy(x^2-y^2)-wave components are considered in detail. It is shown that in both cases the order parameter remains gapless; however, the structure of the lines of nodes and the lobes of the order parameter are modified in distinct ways, and the magnitudes of these modifications differ in their dependence on the (a-b plane) current direction. The magnitude of the induced s-wave component is estimated using the results of the calculations of Ren et al. [Phys. Rev. Lett. 74, 3680 (1995)], which are based on a microscopic approach.Comment: 15 pages, includes 2 figures. To appear in Phys. Rev.

    Plane - Chain coupling in YBa_{2}Cu_{3}O_{7} : temperature dependence of the penetration depth

    Full text link
    We have studied the penetration depth for a model of YBa2Cu3O7YBa_{2}Cu_{3}O_{7} involving pairing both in the CuO2CuO_{2} planes and in the CuO chains. In this model pairing in the planes is due to an attractive interaction, while Coulomb repulsion induces in the chains an order parameter with opposite sign. Due to the anticrossing produced by hybridization between planes and chains, one obtains a d-wave like order parameter which changes sign on a single sheet of the Fermi surface and has nodes in the gap. We find that our model accounts quite well for the anisotropy of the penetration depth and for the absolute values. We reproduce fairly well the whole temperature dependence for both the a and the b directions, including the linear dependence at low temperature. We use a set of parameters which are all quite reasonable physically. Our results for the c direction are also satisfactory, although the situation is less clear both experimentally and theoretically.Comment: 11 pages, revtex, 6 figure

    Staphylococcus aureus toxin LukSF dissociates from its membrane receptor target to enable renewed ligand sequestration

    Get PDF
    Staphylococcus aureus Panton-Valentine leukocidin is a pore-forming toxin targeting the human C5a receptor (hC5aR), enabling this pathogen to battle the immune response by destroying phagocytes through targeted lysis. The mechanisms that contribute to rapid cell lysis are largely unexplored. Here, we show that cell lysis may be enabled by a process of toxins targeting receptor clusters and present indirect evidence for receptor recycling that allows multiple toxin pores to be formed close together. With the use of live cell single-molecule super-resolution imaging, Forster resonance energy transfer and nanoscale total internal reflection fluorescence colocalization microscopy, we visualized toxin pore formation in the presence of its natural docking ligand. We demonstrate disassociation of hC5aR from toxin complexes and simultaneous binding of new ligands. This effect may free mobile receptors to amplify hyperinflammatory reactions in early stages of microbial infections and have implications for several other similar bicomponent toxins and the design of new antibiotics.Haapasalo, K., Wollman, A. J. M., de Haas, C. J. C., van Kessel, K. P. M., van Strijp, J. A. G., Leake, M. C. Staphylococcus aureus toxin LukSF dissociates from its membrane receptor target to enable renewed ligand sequestration.Peer reviewe

    Disappearance of Ensemble-Averaged Josephson Current in Dirty SNS Junctions of d-wave Superconductors

    Full text link
    We discuss the Josephson current in superconductor / dirty normal conductor / superconductor junctions, where the superconductors have dx2y2d_{x^2-y^2} pairing symmetry. The low-temperature behavior of the Josephson current depends on the orientation angle between the crystalline axis and the normal of the junction interface. We show that the ensemble-averaged Josephson current vanishes when the orientation angle is π/4\pi/4 and the normal conductor is in the diffusive transport regime. The dx2y2d_{x^2-y^2}-wave pairing symmetry is responsible for this fact.Comment: 8 pages, 5 figure

    The dynamics of animal social networks: Analytical, conceptual, and theoretical advances

    Get PDF
    Social network analysis provides a broad and complex perspective on animal sociality that is widely applicable to almost any species. Recent applications demonstrate the utility of network analysis for advancing our understanding of the dynamics, selection pressures, development, and evolution of complex social systems. However, most studies of animal social networks rely primarily on a descriptive approach. To propel the field of animal social networks beyond exploratory analyses and to facilitate the integration of quantitative methods that allow for the testing of ecologically and evolutionarily relevant hypotheses, we review methodological and conceptual advances in network science, which are underutilized in studies of animal sociality. First, we highlight how the use of statistical model- ing and triadic motifs analysis can advance our understanding of the processes that structure networks. Second, we discuss how the consideration of temporal changes and spatial constraints can shed light on the dynamics of social networks. Third, we consider how the study of variation at multiple scales can potentially transform our understanding of the structure and function of animal networks. We direct readers to analytical tools that facilitate the adoption of these new concepts and methods. Our goal is to provide behavioral ecologists with a toolbox of current methods that can stimulate novel insights into the ecological influences and evolutionary pressures structuring networks and advance our understanding of the proximate and ultimate processes that drive animal sociality

    Pairing symmetry and long range pair potential in a weak coupling theory of superconductivity

    Full text link
    We study the superconducting phase with two component order parameter scenario, such as, dx2y2+eiθsαd_{x^2-y^2} + e^{i\theta}s_{\alpha}, where α=xy,x2+y2\alpha = xy, x^2+y^2. We show, that in absence of orthorhombocity, the usual dx2y2d_{x^2-y^2} does not mix with usual sx2+y2s_{x^2+y^2} symmetry gap in an anisotropic band structure. But the sxys_{xy} symmetry does mix with the usual d-wave for θ=0\theta =0. The d-wave symmetry with higher harmonics present in it also mixes with higher order extended ss wave symmetry. The required pair potential to obtain higher anisotropic dx2y2d_{x^2-y^2} and extended s-wave symmetries, is derived by considering longer ranged two-body attractive potential in the spirit of tight binding lattice. We demonstrate that the dominant pairing symmetry changes drastically from dd to ss like as the attractive pair potential is obtained from longer ranged interaction. More specifically, a typical length scale of interaction ξ\xi, which could be even/odd multiples of lattice spacing leads to predominant s/ds/d wave symmetry. The role of long range interaction on pairing symmetry has further been emphasized by studying the typical interplay in the temperature dependencies of these higher order dd and ss wave pairing symmetries.Comment: Revtex 8 pages, 7 figures embeded in the text, To appear in PR

    Analysis of the Chloroplast Protein Kinase Stt7 during State Transitions

    Get PDF
    State transitions allow for the balancing of the light excitation energy between photosystem I and photosystem II and for optimal photosynthetic activity when photosynthetic organisms are subjected to changing light conditions. This process is regulated by the redox state of the plastoquinone pool through the Stt7/STN7 protein kinase required for phosphorylation of the light-harvesting complex LHCII and for the reversible displacement of the mobile LHCII between the photosystems. We show that Stt7 is associated with photosynthetic complexes including LHCII, photosystem I, and the cytochrome b6f complex. Our data reveal that Stt7 acts in catalytic amounts. We also provide evidence that Stt7 contains a transmembrane region that separates its catalytic kinase domain on the stromal side from its N-terminal end in the thylakoid lumen with two conserved Cys that are critical for its activity and state transitions. On the basis of these data, we propose that the activity of Stt7 is regulated through its transmembrane domain and that a disulfide bond between the two lumen Cys is essential for its activity. The high-light–induced reduction of this bond may occur through a transthylakoid thiol–reducing pathway driven by the ferredoxin-thioredoxin system which is also required for cytochrome b6f assembly and heme biogenesis

    The dynamics of animal social networks: Analytical, conceptual, and theoretical advances

    Get PDF
    Social network analysis provides a broad and complex perspective on animal sociality that is widely applicable to almost any species. Recent applications demonstrate the utility of network analysis for advancing our understanding of the dynamics, selection pressures, development, and evolution of complex social systems. However, most studies of animal social networks rely primarily on a descriptive approach. To propel the field of animal social networks beyond exploratory analyses and to facilitate the integration of quantitative methods that allow for the testing of ecologically and evolutionarily relevant hypotheses, we review methodological and conceptual advances in network science, which are underutilized in studies of animal sociality. First, we highlight how the use of statistical model- ing and triadic motifs analysis can advance our understanding of the processes that structure networks. Second, we discuss how the consideration of temporal changes and spatial constraints can shed light on the dynamics of social networks. Third, we consider how the study of variation at multiple scales can potentially transform our understanding of the structure and function of animal networks. We direct readers to analytical tools that facilitate the adoption of these new concepts and methods. Our goal is to provide behavioral ecologists with a toolbox of current methods that can stimulate novel insights into the ecological influences and evolutionary pressures structuring networks and advance our understanding of the proximate and ultimate processes that drive animal sociality
    corecore