265 research outputs found

    Genetic Variability of Stingless Bees Melipona mondury Smith and Melipona quadrifasciata Lepeletier (Hymenoptera: Apidae) from a Meliponary

    Get PDF
    The species of stingless bees Melipona mondury Smith and Melipona quadrifasciata Lepeletier are native to the Atlantic Forest, sensitive to environmental changes and therefore, endangered in several Brazilian states. This study aimed to evaluate the genetic variability of populations of these two species at the meliponary of the Regional University of Blumenau through the use of heterospecific microsatellite primers. We collected one worker from 19 colonies of M. mondury and from 25 colonies of M. quadrifasciata. We found low levels of genetic variability for both species, which may be explained by null alleles, queen philopatry and/or artificial maintenance of hives. Whether natural populations of these species are presenting low genetic variability they might be endangered

    Genomic insights into the rapid emergence and evolution of MDR in Staphylococcus pseudintermedius.

    Get PDF
    OBJECTIVES: MDR methicillin-resistant Staphylococcus pseudintermedius (MRSP) strains have emerged rapidly as major canine pathogens and present serious treatment issues and concerns to public health due to their, albeit low, zoonotic potential. A further understanding of the genetics of resistance arising from a broadly susceptible background of S. pseudintermedius is needed. METHODS: We sequenced the genomes of 12 S. pseudintermedius isolates of varied STs and resistance phenotypes. RESULTS: Nine distinct clonal lineages had acquired either staphylococcal cassette chromosome (SCC) mec elements and/or Tn5405-like elements carrying up to five resistance genes [aphA3, sat, aadE, erm(B), dfrG] to generate MRSP, MDR methicillin-susceptible S. pseudintermedius and MDR MRSP populations. The most successful and clinically problematic MDR MRSP clones, ST68 SCCmecV(T) and ST71 SCCmecII-III, have further accumulated mutations in gyrA and grlA conferring resistance to fluoroquinolones. The carriage of additional mobile genetic elements (MGEs) was highly variable, suggesting that horizontal gene transfer is frequent in S. pseudintermedius populations. CONCLUSIONS: Importantly, the data suggest that MDR MRSP evolved rapidly by the acquisition of a very limited number of MGEs and mutations, and that the use of many classes of antimicrobials may co-select for the spread and emergence of MDR and XDR strains. Antimicrobial stewardship will need to be comprehensive, encompassing human medicine and veterinary disciplines to successfully preserve antimicrobial efficacy

    Yeast Infections after Esophagectomy:A Retrospective Analysis

    Get PDF
    Esophageal malignancy is a disease with poor prognosis. Curative therapy incorporates surgery and is burdensome with high rates of infection morbidity and mortality. The role of yeast as causative organisms of post-esophagectomy infections is poorly defined. Consequently, the benefits of specific antifungal prophylactic therapy in improving patient outcome are unclear. Therefore, this study aimed at investigating the incidence of yeast infections at the University Medical Center Groningen among 565 post-esophagectomy patients between 1991 and 2017. The results show that 7.3% of the patients developed a yeast infection after esophageal resection with significantly increased incidence among patients suffering from diabetes mellitus. For patients with yeast infections, higher Acute Physiology and Chronic Health Evaluation (APACHE) II scores, more frequent intensive care unit readmissions, prolonged hospital stays and higher mortality rates were observed. One-year survival was significantly lower for patients with a yeast infection, as well as diabetes mellitus and yeast-positive pleural effusion. We conclude that the incidence of yeast infections following esophagectomy is considerable, and that patients with diabetes mellitus are at increased risk. Furthermore, yeast infections are associated with higher complication rates and mortality. These observations encourage further prospective investigations on the possible benefits of antifungal prophylactic therapy for esophagectomy patients

    Culture-independent detection and characterisation of Mycobacterium tuberculosis and M. africanum in sputum samples using shotgun metagenomics on a benchtop sequencer

    Get PDF
    Tuberculosis remains a major global health problem. Laboratory diagnostic methods that allow effective, early detection of cases are central to management of tuberculosis in the individual patient and in the community. Since the 1880s, laboratory diagnosis of tuberculosis has relied primarily on microscopy and culture. However, microscopy fails to provide species- or lineage-level identification and culture-based workflows for diagnosis of tuberculosis remain complex, expensive, slow, technically demanding and poorly able to handle mixed infections. We therefore explored the potential of shotgun metagenomics, sequencing of DNA from samples without culture or target-specific amplification or capture, to detect and characterise strains from the Mycobacterium tuberculosis complex in smear-positive sputum samples obtained from The Gambia in West Africa. Eight smear- and culture-positive sputum samples were investigated using a differential-lysis protocol followed by a kit-based DNA extraction method, with sequencing performed on a benchtop sequencing instrument, the Illumina MiSeq. The number of sequence reads in each sputum-derived metagenome ranged from 989,442 to 2,818,238. The proportion of reads in each metagenome mapping against the human genome ranged from 20% to 99%. We were able to detect sequences from the M. tuberculosis complex in all eight samples, with coverage of the H37Rv reference genome ranging from 0.002X to 0.7X. By analysing the distribution of large sequence polymorphisms (deletions and the locations of the insertion element IS6110) and single nucleotide polymorphisms (SNPs), we were able to assign seven of eight metagenome-derived genomes to a species and lineage within the M. tuberculosis complex. Two metagenome-derived mycobacterial genomes were assigned to M. africanum, a species largely confined to West Africa; the others that could be assigned belonged to lineages T, H or LAM within the clade of "modern" M. tuberculosis strains. We have provided proof of principle that shotgun metagenomics can be used to detect and characterise M. tuberculosis sequences from sputum samples without culture or target-specific amplification or capture, using an accessible benchtop-sequencing platform, the Illumina MiSeq, and relatively simple DNA extraction, sequencing and bioinformatics protocols. In our hands, sputum metagenomics does not yet deliver sufficient depth of coverage to allow sequence-based sensitivity testing; it remains to be determined whether improvements in DNA extraction protocols alone can deliver this or whether culture, capture or amplification steps will be required. Nonetheless, we can foresee a tipping point when a unified automated metagenomics-based workflow might start to compete with the plethora of methods currently in use in the diagnostic microbiology laboratory

    The soft mechanical signature of glial scars in the central nervous system

    Get PDF
    Injury to the central nervous system (CNS) alters the molecular and cellular composition of neural tissue and leads to glial scarring, which inhibits the regrowth of damaged axons. Mammalian glial scars supposedly form a chemical and mechanical barrier to neuronal regeneration. While tremendous effort has been devoted to identifying molecular characteristics of the scar, very little is known about its mechanical properties. Here we characterize spatiotemporal changes of the elastic stiffness of the injured rat neocortex and spinal cord at 1.5 and three weeks post-injury using atomic force microscopy. In contrast to scars in other mammalian tissues, CNS tissue significantly softens after injury. Expression levels of glial intermediate filaments (GFAP, vimentin) and extracellular matrix components (laminin, collagen IV) correlate with tissue softening. As tissue stiffness is a regulator of neuronal growth, our results may help to understand why mammalian neurons do not regenerate after injury.We are grateful for financial support by the Herchel Smith Foundation and Wellcome Trust-MIT Fellowships to E.M., an EMBO Long-Term Fellowship (ALTF 1263-2015; European Commission FP7 (Marie Curie Actions, LTFCOFUND2013, GA-2013- 609409)) to I.P.W., the German National Academic Foundation (Scholarship to D.E.K.) and the UK Medical Research Council (Career Development Award G1100312/1 to K.F.)

    Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo.

    Get PDF
    Collective cell migration is essential for morphogenesis, tissue remodelling and cancer invasion. In vivo, groups of cells move in an orchestrated way through tissues. This movement involves mechanical as well as molecular interactions between cells and their environment. While the role of molecular signals in collective cell migration is comparatively well understood, how tissue mechanics influence collective cell migration in vivo remains unknown. Here we investigated the importance of mechanical cues in the collective migration of the Xenopus laevis neural crest cells, an embryonic cell population whose migratory behaviour has been likened to cancer invasion. We found that, during morphogenesis, the head mesoderm underlying the cephalic neural crest stiffens. This stiffening initiates an epithelial-to-mesenchymal transition in neural crest cells and triggers their collective migration. To detect changes in their mechanical environment, neural crest cells use mechanosensation mediated by the integrin-vinculin-talin complex. By performing mechanical and molecular manipulations, we show that mesoderm stiffening is necessary and sufficient to trigger neural crest migration. Finally, we demonstrate that convergent extension of the mesoderm, which starts during gastrulation, leads to increased mesoderm stiffness by increasing the cell density underneath the neural crest. These results show that convergent extension of the mesoderm has a role as a mechanical coordinator of morphogenesis, and reveal a link between two apparently unconnected processes-gastrulation and neural crest migration-via changes in tissue mechanics. Overall, we demonstrate that changes in substrate stiffness can trigger collective cell migration by promoting epithelial-to-mesenchymal transition in vivo. More broadly, our results raise the idea that tissue mechanics combines with molecular effectors to coordinate morphogenesis

    Niche stiffness underlies the ageing of central nervous system progenitor cells.

    Get PDF
    Ageing causes a decline in tissue regeneration owing to a loss of function of adult stem cell and progenitor cell populations1. One example is the deterioration of the regenerative capacity of the widespread and abundant population of central nervous system (CNS) multipotent stem cells known as oligodendrocyte progenitor cells (OPCs)2. A relatively overlooked potential source of this loss of function is the stem cell 'niche'-a set of cell-extrinsic cues that include chemical and mechanical signals3,4. Here we show that the OPC microenvironment stiffens with age, and that this mechanical change is sufficient to cause age-related loss of function of OPCs. Using biological and synthetic scaffolds to mimic the stiffness of young brains, we find that isolated aged OPCs cultured on these scaffolds are molecularly and functionally rejuvenated. When we disrupt mechanical signalling, the proliferation and differentiation rates of OPCs are increased. We identify the mechanoresponsive ion channel PIEZO1 as a key mediator of OPC mechanical signalling. Inhibiting PIEZO1 overrides mechanical signals in vivo and allows OPCs to maintain activity in the ageing CNS. We also show that PIEZO1 is important in regulating cell number during CNS development. Thus we show that tissue stiffness is a crucial regulator of ageing in OPCs, and provide insights into how the function of adult stem and progenitor cells changes with age. Our findings could be important not only for the development of regenerative therapies, but also for understanding the ageing process itself.The work was supported by European Research Council (ERC) grant 772798 (to K.J.C.) and 772426 (to K.F.); the UK Multiple Sclerosis Society (to R.J.M.F.); Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/M008827/1 (to K.J.C and R.J.M.F.) and BB/N006402/1 (to K.F.); the Adelson Medical Research Foundation (R.J.M.F. and D.H.R.); an EMBO Long-Term Fellowship ALTF 1263-2015 and European Commission FP7 actions LTFCOFUND2013, GA-2013-609409 (to I.P.W.); and a core support grant from the Wellcome Trust and Medical Research Council (MRC) to the Wellcome Trust–MRC Cambridge Stem Cell Institute
    • …
    corecore