692 research outputs found

    A human computer interactions framework for biometric user identification

    Get PDF
    Computer assisted functionalities and services have saturated our world becoming such an integral part of our daily activities that we hardly notice them. In this study we are focusing on enhancements in Human-Computer Interaction (HCI) that can be achieved by natural user recognition embedded in the employed interaction models. Natural identification among humans is mostly based on biometric characteristics representing what-we-are (face, body outlook, voice, etc.) and how-we-behave (gait, gestures, posture, etc.) Following this observation, we investigate different approaches and methods for adapting existing biometric identification methods and technologies to the needs of evolving natural human computer interfaces

    Mobiles and wearables: owner biometrics and authentication

    Get PDF
    We discuss the design and development of HCI models for authentication based on gait and gesture that can be supported by mobile and wearable equipment. The paper proposes to use such biometric behavioral traits for partially transparent and continuous authentication by means of behavioral patterns. © 2016 Copyright held by the owner/author(s)

    Ground-based optical transmission spectrum of the hot Jupiter HAT-P-1b

    Full text link
    Time-series spectrophotometric studies of exoplanets during transit using ground-based facilities are a promising approach to characterize their atmospheric compositions. We aim to investigate the transit spectrum of the hot Jupiter HAT-P-1b. We compare our results to those obtained at similar wavelengths by previous space-based observations. We observed two transits of HAT-P-1b with the Gemini Multi-Object Spectrograph (GMOS) instrument on the Gemini North telescope using two instrument modes covering the 320 - 800 nm and 520 - 950 nm wavelength ranges. We used time-series spectrophotometry to construct transit light curves in individual wavelength bins and measure the transit depths in each bin. We accounted for systematic effects. We addressed potential photometric variability due to magnetic spots in the planet's host star with long-term photometric monitoring. We find that the resulting transit spectrum is consistent with previous Hubble Space Telescope (HST) observations. We compare our observations to transit spectroscopy models that marginally favor a clear atmosphere. However, the observations are also consistent with a flat spectrum, indicating high-altitude clouds. We do not detect the Na resonance absorption line (589 nm), and our observations do not have sufficient precision to study the resonance line of K at 770 nm. We show that even a single Gemini/GMOS transit can provide constraining power on the properties of the atmosphere of HAT-P-1b to a level comparable to that of HST transit studies in the optical when the observing conditions and target and reference star combination are suitable. Our 520 - 950 nm observations reach a precision comparable to that of HST transit spectra in a similar wavelength range of the same hot Jupiter, HAT-P-1b. However, our GMOS transit between 320 - 800 nm suffers from strong systematic effects and yields larger uncertainties.Comment: A&A, accepted, 16 pages, 8 figures, 5 table

    The effect of signal acquisition and processing choices on ApEn values: Towards a “gold standard” for distinguishing effort levels from isometric force records

    Get PDF
    Approximate Entropy (ApEn) is frequently used to identify changes in the complexity of isometric force records with ageing and disease. Different signal acquisition and processing parameters have been used, making comparison or confirmation of results difficult. This study determined the effect of sampling and parameter choices by examining changes in ApEn values across a range of submaximal isometric contractions of the First Dorsal Interosseus. Reducing the sample rate by decimation changed both the value and pattern of ApEn values dramatically. The pattern of ApEn values across the range of effort levels was not sensitive to the filter cut-off frequency, or the criterion used to extract the section of data for analysis. The complexity increased with increasing effort levels using a fixed ‘r’ value (which accounts for measurement noise) but decreased with increasing effort level when ‘r’ was set to 0.1 of the standard deviation of force. It is recommended isometric force records are sampled at frequencies >200 Hz, template length (‘m’) is set to 2, and 'r' set to measurement system noise or 0.1 SD depending on physiological process to be distinguished. It is demonstrated that changes in ApEn across effort levels are related to changes in force gradation strategy

    Chemical composition and biological activities of the Black Sea algae Polysiphonia denudata (Dillw.) Kutz. and Polysiphonia denudata f. fragilis (Sperk) Woronich.

    Get PDF
    Abstract The two investigated algae had almost identical sterol composition, but there were signifi­cant differences in the com position of the polar components and especially in the composi­tion of the volatiles. P. denudata f. fragilis extracts possessed a stronger biological activity (antibacterial, antifungal and toxicity against Artemia salina). Despite the minute morpholog­ical differences between the two algae, we recommend P. denudata f. fragilis to be regarded as P. denudata subsp. fragilis

    TMEM10 Promotes Oligodendrocyte Differentiation and is Expressed by Oligodendrocytes in Human Remyelinating Multiple Sclerosis Plaques.

    Get PDF
    Oligodendrocyte precursor cells (OPCs) differentiate during postnatal development into myelin-forming oligodendrocytes, in a process distinguished by substantial changes in morphology and the onset of myelin gene expression. A mammalian-specific CNS myelin gene, tmem10, also called Opalin, encodes a type 1 transmembrane protein that is highly upregulated during early stages of OPC differentiation; however, a function for TMEM10 has not yet been identified. Here, consistent with previous studies, we detect TMEM10 protein in mouse brain beginning at ~P10 and show that protein levels continue to increase as oligodendrocytes differentiate and myelinate axons in vivo. We show that constitutive TMEM10 overexpression in the Oli-neu oligodendroglial cell line promotes the expression of the myelin-associated genes MAG, CNP and CGT, whereas TMEM10 knock down in primary OPCs reduces CNP mRNA expression and decreases the percentage of MBP-positive oligodendrocytes that differentiate in vitro. Ectopic TMEM10 expression evokes an increase in process extension and branching, and blocking endogenous TMEM10 expression results in oligodendrocytes with abnormal cell morphology. These findings may have implications for human demyelinating disorders, as oligodendrocytes expressing TMEM10 are detected in human remyelinating multiple sclerosis lesions. Together, our findings provide evidence that TMEM10 promotes oligodendrocyte terminal differentiation and may represent a novel target to promote remyelination in demyelinating disorders

    Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Get PDF
    The James Webb Space Telescope will revolutionize transiting exoplanet atmospheric science due to its capability for continuous, long-duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful future transiting exoplanet characterization programs. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed "community targets") that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations.(Abridged)Comment: This is a white paper that originated from an open discussion at the Enabling Transiting Exoplanet Science with JWST workshop held November 16 - 18, 2015 at STScI (http://www.stsci.edu/jwst/science/exoplanets). Accepted for publication in PAS

    Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age

    Get PDF
    Oligodendrocyte progenitor cells (OPCs), which differentiate into myelinating oligodendrocytes during central nervous system (CNS) development, are the main proliferative cells in the adult brain. OPCs are conventionally considered a homogeneous population, particularly with respect to their electrophysiological properties, but this has been debated. We show, by using single-cell electrophysiological recordings, that OPCs start out as a homogeneous population, but become functionally heterogeneous, varying both within and between brain regions and with age. These electrophysiological changes in OPCs correlate with the differentiation potential of OPCs; thus, they may underlie the differentiational differences in OPCs between regions and likewise differentiation failure with age.We acknowledge the support of the Wellcome - MRC Cambridge Stem Cell Institute core facility managers, in particular for this work Dr Maike Paramor and Miss Victoria Murray with RNA sequencing, and all staff members of the University Biomedical Services (UBS). This project has received funding from: the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771411; R.T.K, K.A.E); the Wellcome Trust, a Research Career Development Fellowship (R.T.K. and K.A.E. 091543/Z/10/Z) and a Studentship (102160/Z/13/Z; Y.K); The Paul G Allen Frontiers Group, Allen Distinguished Investigator Award (12076, R.T.K., D.K.V.); The Medical Research Council, a studentship (S.O.S.); The Gates Foundation, a Gates Scholarship (S.S.), The Biotechnology and Biological Sciences Research Council, a studentship (S.A.); Homerton College Cambridge, a Junior Research Fellowship (D.K.V); The UK MS Society, a Cambridge Myelin Repair Centre grant (50; R.T.K, O.D.F.); The Fonds de recherche du QuĂ©bec-SantĂ©, a scholarship (Y.K.); The Cambridge Commonwealth European & International Trust, a scholarship (Y.K.); and the Lister Institute, a Research Prize (R.T.K., K.A.E, SOS)
    • 

    corecore