470 research outputs found
Stripe-hexagon competition in forced pattern forming systems with broken up-down symmetry
We investigate the response of two-dimensional pattern forming systems with a
broken up-down symmetry, such as chemical reactions, to spatially resonant
forcing and propose related experiments. The nonlinear behavior immediately
above threshold is analyzed in terms of amplitude equations suggested for a
and ratio between the wavelength of the spatial periodic forcing
and the wavelength of the pattern of the respective system. Both sets of
coupled amplitude equations are derived by a perturbative method from the
Lengyel-Epstein model describing a chemical reaction showing Turing patterns,
which gives us the opportunity to relate the generic response scenarios to a
specific pattern forming system. The nonlinear competition between stripe
patterns and distorted hexagons is explored and their range of existence,
stability and coexistence is determined. Whereas without modulations hexagonal
patterns are always preferred near onset of pattern formation, single mode
solutions (stripes) are favored close to threshold for modulation amplitudes
beyond some critical value. Hence distorted hexagons only occur in a finite
range of the control parameter and their interval of existence shrinks to zero
with increasing values of the modulation amplitude. Furthermore depending on
the modulation amplitude the transition between stripes and distorted hexagons
is either sub- or supercritical.Comment: 10 pages, 12 figures, submitted to Physical Review
The metallic state in disordered quasi-one-dimensional conductors
The unusual metallic state in conjugated polymers and single-walled carbon
nanotubes is studied by dielectric spectroscopy (8--600 GHz). We have found an
intriguing correlation between scattering time and plasma frequency. This
relation excludes percolation models of the metallic state. Instead, the
carrier dynamics can be understood in terms of the low density of delocalized
states around the Fermi level, which arises from the competion between
disorder-induced localization and interchain-interactions-induced
delocalization.Comment: 4 pages including 4 figure
Shifting states, shifting services: Linking regime shifts to changes in ecosystem services of shallow lakes
Shallow lakes can shift between stable states as a result of anthropogenic or natural drivers. Four common stable states differ in dominant groups of primary producers: submerged, floating, or emergent macrophytes or phytoplankton. Shifts in primary producer dominance affect key supporting, provisioning, regulating, and cultural ecosystem services supplied by lakes. However, links between states and services are often neglected or unknown in lake management, resulting in conflicts and additional costs. Here, we identify major shallow lake ecosystem services and their links to Sustainable Development Goals (SDGs), compare service provisioning among the four ecosystem states and discuss potential trade-offs. We identified 39 ecosystem services potentially provided by shallow lakes. Submerged macrophytes facilitate most of the supporting (86%) and cultural (63%) services, emergent macrophytes facilitate most regulating services (60%), and both emergent and floating macrophytes facilitate most provisioning services (63%). Phytoplankton dominance supports fewer ecosystem services, and contributes most to provisioning services (42%). The shallow lake ecosystem services we identified could be linked to 10 different SDGs, notably zero hunger (SDG 2), clean water and sanitation (SDG 6), sustainable cities and communities (SDG 11), and climate action (SDG13). We highlighted several trade-offs (1) among ecosystem services, (2) within ecosystem services, and (3) between ecosystem services across ecosystems. These trade-offs can have significant ecological and economic consequences that may be prevented by early identification in water quality management. In conclusion, common stable states in shallow lakes provide a different and diverse set of ecosystem services with numerous links to the majority of SDGs. Conserving and restoring ecosystem states should account for potential trade-offs between ecosystem services and preserving the natural value of shallow lakes
Productivity improvement of transmission electron microscopes - A case study
This paper aims to improve the performance of Transmission Electron Microscopes (TEM) used in asbestos detection processes in a business context. Failure Modes and Effects Analysis (FMEA) were studied, identifying the critical failure modes, proposing risk reduction measures and changing maintenance practices based on the Reliability Centered Maintenance strategy. In the elaboration of the FMEA it was evident the lack of data and poor information quality regarding the reliability and maintenance of TEM. These circumstances led to the implementation of training projects to standardize operations and to the development of a software application for data collection and reports generation with relevant performance indicators (Costs, Mean Down Time, Overall Equipment Effectiveness, …) to support operators tasks and decision-making. The approach followed and the tools developed allowed monitoring TEM productivity and maintenance performance. As a result, more informed decisions can be made that will lead to improved performance of TEM.This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020
Causes of Proteolytic Degradation of Secreted Recombinant Proteins Produced in ethylotrophic Yeast Pichia pastoris: Case Study With Recombinant Ovine Interferon-T
It was observed that during fermentative production of recombinant ovine interferon-H (r-oIFN-H ) in Pichia pastoris, a secreted recombinant protein, the protein was degraded increasingly after 48 h of induction and the rate of degradation increased towards the end of fermentation at 72 h, when the fermentation was stopped. Proteases, whose primary source was the vacuoles, was found in in-creasing levels in the cytoplasm and in the fermentation broth after 48 h of induction and reached maximal values when the batch was completed at 72 h. Protease levels at various cell fractions as well as in the culture supernatant were lower when glycerol was used as the carbon source instead of methanol. It can be concluded that methanol me-tabolism along with cell lysis towards the end of fermenta-tion contributes to increased proteolytic activity and even-tual degradation of recombinant protei
Magnetic phases and reorientation transitions in antiferromagnetically coupled multilayers
In antiferromagnetically coupled superlattices grown on (001) faces of cubic
substrates, e.g. based on materials combinations as Co/Cu, Fe/Si, Co/Cr, or
Fe/Cr, the magnetic states evolve under competing influence of bilinear and
biquadratic exchange interactions, surface-enhanced four-fold in-plane
anisotropy, and specific finite-size effects. Using phenomenological
(micromagnetic) theory, a comprehensive survey of the magnetic states and
reorientation transitions has been carried out for multilayer systems with even
number of ferromagnetic sub-layers and magnetizations in the plane. In
two-layer systems (N=2) the phase diagrams in dependence on components of the
applied field in the plane include ``swallow-tail'' type regions of
(metastable) multistate co-existence and a number of continuous and
discontinuous reorientation transitions induced by radial and transversal
components of the applied field. In multilayers (N \ge 4) noncollinear states
are spatially inhomogeneous with magnetization varying across the multilayer
stack. For weak four-fold anisotropy the magnetic states under influence of an
applied field evolve by a complex continuous reorientation into the saturated
state. At higher anisotropy they transform into various inhomogeneous and
asymmetric structures. The discontinuous transitions between the magnetic
states in these two-layers and multilayers are characterized by broad ranges of
multi-phase coexistence of the (metastable) states and give rise to specific
transitional domain structures.Comment: Manuscript 34 pages, 14 figures; submitted for publicatio
Feedback between climate change and eutrophication: revisiting the allied attack concept and how to strike back
Despite its well-established negative impacts on society and biodiversity, eutrophication continues to be one of the most pervasive anthropogenic influences along the freshwater to marine continuum. The interaction between eutrophication and climate change, particularly climate warming, was explicitly focused upon a decade ago by Brian Moss and others in “Allied attack: climate change and eutrophication,” which called for an integrated response to both problems, given their apparent synergy. In this review, we summarise advances in the theoretical framework and empirical research on this issue and analyse the current understanding of the major drivers and mechanisms by which climate change can enhance eutrophication, and vice versa, with a particular focus on shallow lakes. Climate change can affect nutrient loading through changes at the catchment and landscape levels by affecting hydrological patterns and fire frequency and through temperature effects on nutrient cycling. Biotic communities and their interactions can also be directly and indirectly affected by climate change, leading to an overall weakening of resilience to eutrophication impacts. Increasing empirical evidence now indicates several mechanisms by which eutrophying aquatic systems can increasingly act as important sources of greenhouse gases to the atmosphere, particularly methane. We also highlight potential feedback among eutrophication, cyanobacterial blooms, and climate change. Facing both challenges simultaneously is more pressing than ever. Meaningful and strong measures at the landscape and waterbody levels are therefore required if we are to ensure ecosystem resilience and safe water supply, conserve biodiversity, and decrease the carbon footprint of freshwaters
A Precision Medicine Approach Uncovers a Unique Signature of Neutrophils in Patients With Brushite Kidney Stones
Introduction: We have previously found that papillary histopathology differs greatly between calcium oxalate and brushite stone formers (SF); the latter have much more papillary mineral deposition, tubular cell injury, and tissue fibrosis.
Methods: In this study, we applied unbiased orthogonal omics approaches on biopsied renal papillae and extracted stones from patients with brushite or calcium oxalate (CaOx) stones. Our goal was to discover stone type-specific molecular signatures to advance our understanding of the underlying pathogenesis.
Results: Brushite SF did not differ from CaOx SF with respect to metabolic risk factors for stones but did exhibit increased tubule plugging in their papillae. Brushite SF had upregulation of inflammatory pathways in papillary tissue and increased neutrophil markers in stone matrix compared with those with CaOx stones. Large-scale 3-dimensional tissue cytometry on renal papillary biopsies showed an increase in the number and density of neutrophils in the papillae of patients with brushite versus CaOx, thereby linking the observed inflammatory signatures to the neutrophils in the tissue. To explain how neutrophil proteins appear in the stone matrix, we measured neutrophil extracellular trap (NET) formation-NETosis-and found it significantly increased in the papillae of patients with brushite stones compared with CaOx stones.
Conclusion: We show that increased neutrophil infiltration and NETosis is an unrecognized factor that differentiates brushite and CaOx SF and may explain the markedly increased scarring and inflammation seen in the papillae of patients with brushite stones. Given the increasing prevalence of brushite stones, the role of neutrophil activation in brushite stone formation requires further study
- …