3,273 research outputs found

    Scatter of Journals and Literature Obsolescence Reflected in Document Delivery Requests

    Get PDF
    In this paper we investigate the scattering of journals and literature obsolescence reflected in more than 137,000 document delivery requests submitted to a national document delivery service. W e first summarize the major findings of the study with regards to the performance of the service.We then identify the ā€œcoreā€ journals from which article requests were satisfied and address the following research questions: (a) Does the distribution of core) journals conform to the Bradfordā€™s Law of Scattering? (b) Is there a relationship between usage of journals and impact factors, journals with high impact factors being used more often than the rest? (c) Is there a relationship between usage of journals and total citation counts, journals with high total citation counts being used more often than the rest?(d) What is the median age of use (half-life) of requested articles in general? (e) Do requested articles that appear in core journals get obsolete more slowly? (f) Is there a relationship between obsolescence and journal impact factors, journals with high impact factors being obsolete more slowly? (g) Is there a relationship between obsolescence and total citation counts, journals with high total citation counts being obsolete more slowly? Based on the analysis of findings, we found that the distribution of highly and moderately used journal titles conform to Bradfordā€™s Law.The median age of use was 8 years for all requested articles. Ninety percent of the articles requested were 21 years of age or younger.Articles that appeared in 168 core journal titles seem to get obsolete slightly more slowly than those of all titles.W e observed no statistically significant correlations between the frequency of journal use and ISI journal impact factors, and between the frequency of journal use and ISI-Institute for Scientific Information, Philadelphia, PA) cited half-lives for the most heavily used 168 core journal titles.There was a weak correlation between usage of journals and ISI-reported total citation counts.No statistically significant relationship was found between median age of use and journal impact factors and between median age of use and total citation counts.There was a weak negative correlation between ISI journal impact factors and cited half-lives of 168 core journals, and a weak correlation between ISI citation halflives and use half-lives of core journals.No correlation was found between cited half-lives of 168 core journals and their corresponding total citation counts as reported by ISI.Findings of the current study are discussed along with those of other studies

    2p3s3p, 2p3p3p, and 2p3s3s resonant Auger spectroscopy from NiO

    Get PDF
    We have investigated the behavior of the 2p3s3p, 2p3p3p, and 2p3s3s Auger lines of NiO, a model compound in the class of strongly correlated 3d systems, while varying the photon energy across the Ni L3 and L2 absorption edges. The experimental data are discussed in comparison with a theoretical model based on a charge-transfer multiplet approach. When the excitation energy is below the L3 resonance, we observe the 2p3p3p and 2p3s3p peaks at a constant binding energy. This behavior is typical of nonradiative resonant Raman scattering. If the photon energy is increased further, the 2p3p3p and 2p3s3p lines rapidly transform into constant kinetic energy features, showing a normal Auger behavior. The transition from Raman- to Auger-like behavior takes place for photon energies lower than the ones corresponding to excitations of the photoelectron into ligand-hole states. This might indicate the participation of inelastic processes in the recombination of the core hole involving energies much smaller than the NiO gap, or the possible presence of nonlocal effects. On the high photon energy side of the L3 edge, the constant kinetic energy of the 2p3p3p and 2p3s3p peaks is systematically larger than the one observed for an excitation well above the L2,3 edges. We attribute this behavior to the intervention of an intermediate state of 2p^5 3d^10 character, which has very little weight but is strongly enhanced at resonance

    A Branching Time Model of CSP

    Full text link
    I present a branching time model of CSP that is finer than all other models of CSP proposed thus far. It is obtained by taking a semantic equivalence from the linear time - branching time spectrum, namely divergence-preserving coupled similarity, and showing that it is a congruence for the operators of CSP. This equivalence belongs to the bisimulation family of semantic equivalences, in the sense that on transition systems without internal actions it coincides with strong bisimilarity. Nevertheless, enough of the equational laws of CSP remain to obtain a complete axiomatisation for closed, recursion-free terms.Comment: Dedicated to Bill Roscoe, on the occasion of his 60th birthda

    Preserving Liveness Guarantees from Synchronous Communication to Asynchronous Unstructured Low-Level Languages

    Get PDF
    In the implementation of abstract synchronous communication in asynchronous unstructured low-level languages, e.g. using shared variables, the preservation of safety and especially liveness properties is a hitherto open problem due to inherently different abstraction levels. Our approach to overcome this problem is threefold: First, we present our notion of handshake refinement with which we formally prove the correctness of the implementation relation of a handshake protocol. Second, we verify the soundness of our handshake refinement, i.e., all safety and liveness properties are preserved to the lower level. Third, we apply our handshake refinement to show the correctness of all implementations that realize the abstract synchronous communication with the handshake protocol. To this end, we employ an exemplary language with asynchronous shared variable communication. Our approach is scalable and closes the verification gap between different abstraction levels of communication

    Temperature changes and the ATP concentration of the soil microbial biomass

    Get PDF
    Two soils from temperate sites (UK; arable and grassland) were incubated aerobically at 0, 5, 15 or 258C for up to 23 days. During this period both soils were analysed for soil microbial biomass carbon (biomass C) and adenosine 5' triphosphate contents (ATP). Biomass C did not change signi\uaecantly in either soil at any temperature throughout, except during days 0 to 1 in the grassland soil. Soil ATP contents increased slowly throughout the 23 days of incubation, from 2.2 to a maximum of 3.1 nmol ATP g \uff1 soil in the arable soil (a 40% increase) and from 6.2 to a maximum of 11.2 nmol ATP g \uff1 soil in the grassland soil (an increase of 81%), both at 258C. Since biomass C did not change either with increasing temperature or increasing time of incubation, it was concluded that an increase in ATP was either due to an increase in adenylate energy charge or de novo synthesis of ATP, or both. During the incubation, biomass ATP concentrations ranged from about 5 to 12 mmol ATP g \uff1 biomass C but trends between biomass ATP and incubation temperatures were not very obvious until about day 13. On day 23, biomass ATP concentrations were positively and linearly related to temperature: (mmol ATP g \uff1 biomass C = 6.9820.35 + 0.13420.023 T0 (r 2 = 0.77) with no signi\uaecant di erence in the slope between the grassland and arable soils. At 258C the biomass ATP concentration was 10.3 mmol g \uff1 biomass C, remarkably close to many other published values. It was concluded that, although the biomass increased its ATP concentration in response to increasing temperature, the increase was comparatively small. Also, at all temperatures tested, the biomass maintained its ATP concentration within the range commonly reported for micro-organisms growing expontentially in vitro. This is despite the fact that the biomass normally exhibits other features more typical of a ``resting'' or dormant population 0 a paradox which still is not resolved

    Dynamic recruitment of resting state sub-networks

    Get PDF
    Resting state networks (RSNs) are of fundamental importance in human systems neuroscience with evidence suggesting that they are integral to healthy brain function and perturbed in pathology. Despite rapid progress in this area, the temporal dynamics governing the functional connectivities that underlie RSN structure remain poorly understood. Here, we present a framework to help further our understanding of RSN dynamics. We describe a methodology which exploits the direct nature and high temporal resolution of magnetoencephalography (MEG). This technique, which builds on previous work, extends from solving fundamental confounds in MEG (source leakage) to multivariate modelling of transient connectivity. The resulting processing pipeline facilitates direct (electrophysiological) measurement of dynamic functional networks. Our results show that, when functional connectivity is assessed in small time windows, the canonical sensorimotor network can be decomposed into a number of transiently synchronising sub-networks, recruitment of which depends on current mental state. These rapidly changing sub-networks are spatially focal with, for example, bilateral primary sensory and motor areas resolved into two separate sub-networks. The likely interpretation is that the larger canonical sensorimotor network most often seen in neuroimaging studies reflects only a temporal aggregate of these transient sub-networks. Our approach opens new frontiers to study RSN dynamics, showing that MEG is capable of revealing the spatial, temporal and spectral signature of the human connectome in health and disease

    Observation and theoretical description of the pure Fano-effect in the valence-band photo-emission of ferromagnets

    Get PDF
    The pure Fano-effect in angle-integrated valence-band photo-emission of ferromagnets has been observed for the first time. A contribution of the intrinsic spin polarization to the spin polarization of the photo-electrons has been avoided by an appropriate choice of the experimental parameters. The theoretical description of the resulting spectra reveals a complete analogy to the Fano-effect observed before for paramagnetic transition metals. While the theoretical photo-current and spin difference spectra are found in good quantitative agreement with experiment in the case of Fe and Co only a qualitative agreement could be achieved in the case of Ni by calculations on the basis of plain local spin density approximation (LSDA). Agreement with experimental data could be improved in this case in a very substantial way by a treatment of correlation effects on the basis of dynamical mean field theory (DMFT).Comment: 11 pages, 3 figures accepted by PR

    Improving the perceptual quality of ideal binary masked speech

    Get PDF
    It is known that applying a time-frequency binary mask to very noisy speech can improve its intelligibility but results in poor perceptual quality. In this paper we propose a new approach to applying a binary mask that combines the intelligibility gains of conventional binary masking with the perceptual quality gains of a classical speech enhancer. The binary mask is not applied directly as a time-frequency gain as in most previous studies. Instead, the mask is used to supply prior information to a classical speech enhancer about the probability of speech presence in different time-frequency regions. Using an oracle ideal binary mask, we show that the proposed method results in a higher predicted quality than other methods of applying a binary mask whilst preserving the improvements in predicted intelligibility

    Evidence of orbital reconstruction at interfaces in La0.67Sr0.33MnO3 films

    Full text link
    Electronic properties of transition metal oxides at interfaces are influenced by strain, electric polarization and oxygen diffusion. Linear dichroism (LD) x-ray absorption, diffraction, transport and magnetization on thin La0.7Sr0.3MnO3 films, allow identification of a peculiar universal interface effect. We report the LD signature of preferential 3d-eg(3z2-r2) occupation at the interface, suppressing the double exchange mechanism. This surface orbital reconstruction is opposite of that favored by residual strain and independent of dipolar fields, chemical nature of the substrate and capping.Comment: 13 pages, 5 figure
    • ā€¦
    corecore