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ABSTRACT: 

Resting state networks (RSNs) are of fundamental importance in human systems neuroscience with 

evidence suggesting that they are integral to healthy brain function and perturbed in pathology. 

Despite rapid progress in this area, the temporal dynamics governing the functional connectivities 

that underlie RSN structure remain poorly understood. Here, we present a framework to help 

further our understanding of RSN dynamics. We describe a methodology which exploits the direct 

nature and high temporal resolution of magnetoencephalography (MEG). This technique, which 

builds on previous work, extends from solving fundamental confounds in MEG (source leakage) to 

multivariate modelling of transient connectivity. The resulting processing pipeline facilitates direct 

(electrophysiological) measurement of dynamic functional networks. Our results show that, when 

functional connectivity is assessed in small time windows, the canonical sensorimotor network can 

be decomposed into a number of transiently synchronising sub-networks, recruitment of which 

depends on current mental state. These rapidly changing sub-networks are spatially focal with, for 

example, bilateral primary sensory and motor areas resolved into two separate sub-networks. The 

likely interpretation is that the larger canonical sensorimotor network most often seen in 

neuroimaging studies reflects only a temporal aggregate of these transient sub-networks. Our 

approach opens new frontiers to study RSN dynamics, showing that MEG is capable of revealing the 

spatial, temporal and spectral signature of the human connectome in health and disease. 
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INTRODUCTION: 

Recent years have seen a new frontier in human neuroimaging brought about by the measurement 

of functional connectivity between brain regions. The finding of statistical interdependencies 

between signals representing brain function in spatially separate areas, even in the absence of a task 

(so called ͞ƌĞƐƚŝŶŐ ƐƚĂƚĞ͟ ĐŽŶŶĞĐƚŝǀŝƚǇͿ ǁĂƐ ƐŚŽǁŶ by Biswal et al. (Biswal et al., 1995) and has 

subsequently been confirmed in many papers (e.g. (Beckmann et al., 2005; Fox et al., 2005; Raichle 

et al., 2001). The principal finding is that brain function is supported by a relatively small set of large 

scale distributed networks, each characterised by spatially resolved patterns of functional 

connectivity. Some networks support sensory function (e.g. the sensorimotor network), whilst 

others are associated with attention and cognition (e.g. the fronto-parietal networks). These 

networks are reproducible across subjects, present in resting and task positive data, and are 

perturbed in a variety of pathologies. The mathematical methods most commonly used to probe 

functional connectivity employ a measurement of temporal correlation calculated over large time 

windows, usually comprising the entire experiment. This necessarily implies a prior assumption that 

functional connectivity between regions is stationary. However, increasing evidence from recent 

studies (Allen et al., 2014; Baker et al., 2014; Baker et al., 2012; Brookes et al., 2014; Chang and 

Glover, 2010; de Pasquale et al., 2010; Hutchison et al., 2013) suggests that resting state networks 

(RSNs), and the functional connectivities that define them, are time dependent. These dynamics are 

poorly understood, but the likelihood is that healthy brain function is supported by rapid and 

transient formation and dissolution of many small focal networks, the dynamics of which depend on 

current processing load. Furthermore, the RSN signatures that are commonly depicted in 

ŶĞƵƌŽŝŵĂŐŝŶŐ ƐƚƵĚŝĞƐ ;ŚĞŶĐĞĨŽƌƚŚ ƚĞƌŵĞĚ ͚ƐƚĂƚŝĐ͛ RSNs) doubtless represent a time average of this 

transient connectivity. In this paper, we present a new framework in which to investigate and 

understand RSNs, by showing explicitly that multiple transiently synchronising sub-networks 

underlie the static network topology of the sensorimotor system.  

 

Functional magnetic resonance imaging (fMRI) remains the most common means to investigate 

RSNs, and recent fMRI studies provide evidence for network non-stationarity (see (Hutchison et al., 

2013) for a review). Indeed transient connectivity measures elucidate significant departures from 

established RSNs (Allen et al., 2014), with networks observed to form and dissolve over time. This 

said, a limitation of fMRI is the slow and indirect haemodynamic response, which makes 

measurement of fast temporal dynamics difficult. Recent years have seen a rapid advance in our 

understanding of neural oscillations (rhythmic electrical activity within cell assemblies). These 

oscillations, commonly reported in the 1 Hz ʹ 200 Hz band, are thought to represent an intrinsic 
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mode of electrophysiological connectivity (Engel et al., 2013; Schoffelen and Gross, 2009; Scholvinck 

et al., 2013). In particular, two distinct types of coupling have become prominent (Engel et al., 2013): 

The first arises from phase coupling between band-limited oscillatory signals; the second is the result 

of synchronisation between the amplitude envelopes of band limited oscillations. 

Magnetoencephalography (MEG) has been used successfully to characterise these intrinsic 

mechanisms (Brookes et al., 2011a; Brookes et al., 2011b; Gow et al., 2008; Gross et al., 2001; 

Ioannides et al., 2000; Jerbi et al., 2007; Liu et al., 2010; Luckhoo et al., 2012; Marzetti et al., 2013; 

Nolte et al., 2004; Nolte et al., 2008; Ramnani et al., 2004; Schlogl and Supp, 2006; Schoffelen and 

Gross, 2009; Tass et al., 1998; Wens et al., 2014), and much of the available evidence implies that 

envelope synchrony relates closely to the RSNs observed in fMRI. In fact, the spatial signatures of a 

number of fMRI based RSNs can be seen using MEG based envelope correlation metrics; this finding 

has now been observed in a number of studies (Brookes et al., 2011a; Brookes et al., 2011b; Hipp et 

al., 2012; Liu et al., 2010; Luckhoo et al., 2012; Wens et al., 2014). There is also emerging evidence 

showing that connectivity, as assessed by envelope synchronisation, is a dynamic process with 

significant non-stationarity observable in the resting state (Baker et al., 2014; Baker et al., 2012; 

Brookes et al., 2014; de Pasquale et al., 2010). Such MEG based measurements are not limited by 

the indirect nature of the haemodynamic response and therefore offer significant advantages in 

characterising transient connectivity. Overall, the apparent close relationship between neural 

oscillatory processes and RSNs, coupled with the promise of MEG based network measures to 

characterise dynamics, suggest that studies in this area offer an excellent opportunity to further our 

understanding of the dynamic connectome.  

 

In this paper, we exploit the direct nature and good time resolution of MEG measured beta band 

neural oscillations to investigate transient functional connectivity in the sensorimotor network.  We 

choose this network specifically, since it is one of the best characterised RSNs, whose morphology is 

open to direct interpretation. We hypothesise that the sensorimotor RSN described in the literature 

based on stationarity assumptions is, in fact, a temporally and spatially smoothed aggregate of 

multiple (more focal) transiently synchronising sub-networks (TSNs). To test this hypothesis, we 

combine a multivariate sliding window approach based upon canonical correlation analysis (CCA) 

(Barnes et al., 2011; Brookes et al., 2014; Hotelling, 1936; Soto et al., 2010) with vector quantization 

(MacQueen, 1967) to generate a method to identify robustly occurring transient connectivity 

patterns. Applying this method to two separate datasets, we derive the spatial signatures of multiple 

TSNs occurring within the sensorimotor system. We show that these individual spatial signatures 

describe significantly more variance than any equivalent signature defined assuming stationarity. We 
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go on to show that TSNs generalise across subjects and across independent experiments. Finally, we 

hypothesised that, on initiation of a motor task, efficient neural processing would favour 

recruitment of a specific set of sub-networks (that were also observable in resting data). We show 

that in spite of no significant change in overall connectivity between statically defined network 

nodes, specific sub-networks significantly increase their likelihood of occurrence during task. 

 

2) METHODS: 

2.1) Data acquisition:  

Two separate MEG datasets were acquired. The first ǁĂƐ ĚĞƐŝŐŶĞĚ ĂƐ Ă ͚ƌĞƐƚŝŶŐ ƐƚĂƚĞ͛ ƌĞĐŽƌĚŝŶŐ ǁŝƚŚ 

an intermittent self-paced motor response. The second comprised a cognitive task. 

 

Dataset 1: Self-paced motor: Ten volunteers (8 male, 2 female aged 25±4 years (mean ± SD)) were 

asked to lie supine in the MEG system and execute a button press with the index finger of their non-

dominant hand. Subjects were told that button presses should be repeated infrequently 

(approximately once every 30s) for a total of 1200s, and that they should not count in the period 

between presses. Ten right handed subjects were recruited. Button presses were recorded using a 

keypad. 

 

Dataset 2 - Sternberg working memory task: Eleven subjects (7 male, 4 female, and aged average 

31±6 years (mean ± SD)) were recruited to this study. In the task, a single trial comprised 

presentation of two example visual stimuli (arbitrary black abstract shapes on a grey background, 

shown for 600ms with 1s between onsets); this was followed by a 6s maintenance period and a third 

probe stimulus which was shown for a duration of 3s. The subject was asked to respond, via right 

handed button press (index finger), if the probe stimulus matched either of the two example stimuli. 

A single block comprised three trials followed by a rest phase lasting 36s; 15 blocks were presented 

to each subject. The probability of a target (i.e. the probe matched one of the two example stimuli) 

was 0.5. 

 

These two paradigms both contain a motor response (a button press). However, the difference 

between them allows contrast between simple motor action, infrequently performed during the 

resting state, and similar motor action set within a complex cognitive paradigm. It was reasoned that 

if TSN signatures were integral to sensorimotor processing, then equivalent TSNs should be observed 

for both tasks. In addition, the Sternberg task would allow investigation of TSN dynamics for fast and 
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slow reaction times. Both experiments were approved by the University Of Nottingham School Of 

Medicine Ethical Committee.  

 

All MEG data were collected using the synthetic third order gradiometer configuration of a 275-

channel CTF MEG system (MISL, Coqulitam, Canada) at a sampling rate of either 1200Hz (self-paced) 

or 600Hz (Sternberg). Subjects were positioned supine. Prior to data acquisition, three head position 

indicator coils were placed on the head. These coils were energised periodically during data 

acquisition in order to localise the subjects head in the scanner. To facilitate co-registration of the 

MEG sensor geometry to brain anatomy, a 3D digitisation of the three fiducial points and the head 

surface was acquired using a Polhemus Isotrack digitiser system. Anatomical MR images were 

acquired using either a 3T or 7T Phillips Acheiva MRI scanner at a voxel resolution of 1mm
3
. 

Coregistration of MEG data to the anatomical MRI was completed by matching the digitised head 

surface (Polhemus) to the equivalent head surface extracted from the anatomical MRI. 

 

2.2) Data Analysis 

A novel data processing pipeline was developed to image the hypothesised TSNs. This is shown 

schematically in Figure 1. Functional connectivity was estimated as correlation between the 

amplitude envelopes of band limited neural oscillations in left and right regions of the static 

sensorimotor network; this method was chosen over phase coherence due to its close relationship 

to RSN structure observed previously (Brookes et al., 2011b). Since previous studies show that 

sensorimotor network connectivity is strongest in the beta band (Brookes et al., 2011a; Brookes et 

al., 2014; Hipp et al., 2012) analyses were limited to 13-30Hz. Our technique used: 1) a spatial filter 

to project sensor space MEG data into brain space and dynamic multivariate leakage reduction to 

ameliorate the confounds of source space signal leakage (this is a critical step in order to prevent 

artefactual results ʹ our technique for dealing with it is given in supplementary information). 2) A 

sliding window canonical correlation analysis (CCA) to estimate the spatial signature of transient 

functional connectivity within each time window. 3) Vector quantisation (k-means clustering) to 

cluster connectivity images into repeating spatial patterns; it is these patterns which form our 

transiently synchronising sub-networks (TSNs). These steps are each described further below. 
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Figure 1: Schematic diagram showing the processing pipeline used to extract transiently synchronising networks 
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2.2.1) Source Localisation and leakage correction:  

Source localisation was carried out using an adaptive beamformer (Robinson and Vrba, 1999; Van 

Veen et al., 1997). Covariance was computed in the beta band using a time window spanning the 

whole experiment (Brookes et al., 2008). Regularisation was applied to the data covariance matrix 

using the Tikhonov method, with a regularisation parameter set to ensure a condition nmber of 100. 

The forward model was based upon a dipole approximation (Sarvas, 1987) and a multiple local 

sphere head model (Huang et al., 1999). Dipole orientation was determined using a non-linear 

search for optimum signal to noise ratio (SNR). Source timecourses were computed at the vertices of 

a regular (8mm) grid spanning the volume enclosed by the static sensorimotor network. The 

network mask was based upon an atlas derived using spatial independent component analysis 

applied to fMRI data (Filippini et al., 2009). The mask contains bilateral primary motor cortices as 

well as bilateral primary and secondary somatosensory cortices. The seed cluster was placed in the 

right hemisphere and the test cluster in the left hemisphere. Note that this spatial signature has 

featured in previously published studies (e.g. (Brookes et al., 2011b; Filippini et al., 2009; Luckhoo et 

al., 2012)) and represents a robust measure of the canonical static sensorimotor network. 

Beamformer estimated timecourses for all voxels within the mask were divided by hemisphere; a 

͚ƐĞĞĚ͛ ĐůƵƐƚĞƌ ǁĂƐ ĚĞĨŝŶĞĚ, containing all voxels in the left hemisphere enclosed by the mask; 

likewise Ă ͚ƚĞƐƚ͛ ĐůƵƐƚĞƌ ǁĂƐ ĚĞĨŝŶĞĚ containing all voxels in the right hemisphere enclosed by the 

mask (see Figure 1).  

 

Our subsequent analysis aims to measure inter-hemispheric connectivity between the seed and test 

clusters. The major confound of MEG connectivity measurements is signal leakage between source 

space timecourses (i.e. leakage between seed and test clusters) (Brookes et al., 2014; Brookes et al., 

2012; Hipp et al., 2012). This is a consequence of the ill-posed MEG inverse problem and typically 

results in artifactually inflated connectivity estimates. A simple method to reduce this leakage is 

based upon linear regression, which has been described in previous studies (Brookes et al., 2012; 

Hipp et al., 2012). However, here we note that our implicit assumptions of non-stationarity in 

functional connectivity bring with them implications for such standard methods to mitigate the 

effects of leakage. A difference between the two studies previously published is that Brookes et al. 

assumed stationarity, and performed a single leakage correction step for the whole dataset, whereas 

Hipp et al. proposed a dynamic approach correcting small time-windows individually. The advantage 

of the former is that the leakage correction will be more precise as it is based on more data. The 
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advantage of the latter is that it will be robust for non-stationary data. In fact it can be shown (see 

supplementary material) that when measuring functional connectivity across multiple time windows, 

if changes in variance in either a seed or test cluster timecourse are expected between windows, 

then dynamic leakage reduction is essential to ensure unbiased functional connectivity estimation. 

For this reason, in the present work, we used a dynamic multivariate regression approach to 

eliminate signal leakage between the seed and test clusters on a window by window basis. 

 

2.2.2) Transient functional connectivity calculation via CCA:  

Following source localisation and leakage reduction, beamformer projected data for all voxels in the 

seed and test clusters were Hilbert transformed and their associated analytic signal computed. The 

absolute value of the analytic signal was then derived, generating timecourses of the envelope of 

beta oscillations for every voxel. These envelope timecourses were down-sampled temporally to 50 

Hz to improve computational efficiency.  

 

Canonical Correlation Analysis (CCA) (Hotelling, 1936) is a method to calculate statistical 

interdependencies between two multi-dimensional data matrices. CCA has been used extensively in 

previous MEG studies and complete descriptions can be found elsewhere (Barnes et al., 2011; 

Brookes et al., 2014; Soto et al., 2009; Soto et al., 2010). In the present context, CCA was applied 

across voxel timecourses to assess relationships between the beta envelopes in the seed and test 

clusters. A sliding window framework was used with canonical correlation measured independently 

within either 6 s windows (self-paced Study) or 3 s windows (Sternberg study). (The difference in 

window width across the two studies was to account for the shorter trial duration in the Sternberg 

task.) The sliding window allows a measure of temporal changes in correlation between data 

matrices. It is important to note that, since the columns of the seed and test data matrices comprise 

windowed beta amplitude envelopes from adjacent voxels, those columns are necessarily correlated 

due to the inherent smoothness of beamformer reconstruction. For this reason, prior to CCA, both 

matrices were decomposed using principal component analysis into four orthogonal features, thus 

allowing unambiguous assessment of the relationship between the seed and test clusters. A 

multivariate general linear model was then applied, describing temporal features in the test cluster 

as a linear mixture of features in the seed cluster. Appropriate analysis (see supplementary 

information for details) then facilitates calculation of the optimal linear combination of features in 

seed and test clusters that maximise correlation. For any one time window, the canonical correlation 

coefficients estimate the strength of inter-hemispheric connectivity. More importantly, the 

canonical vectors give the optimal combination of features (hence voxels) that maximises 
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connectivity. In this way, images can be generated showing which voxels contribute most to 

functional connectivity within any one time window. Sliding that window in time (using either 1s 

steps (self-paced Study) or 0.25s steps (Sternberg study)) facilitates generation of many images, each 

showing the transient spatial signature of functional connectivity. These images were transformed 

spatially into MNI space using FLIRT in FSL (Jenkinson et al., 2012). Images were then concatenated 

across all 10 subjects for the self-paced study, and all 11 subjects for the Sternberg study. 

 

In addition to the sliding window images, static images were also derived using the same CCA 

method, but with one single window spanning the entire duration of the experiment. These static 

images highlight voxels that contribute maximally to correlation between the seed and test clusters, 

over all time. They were transformed spatially into MNI space using FLIRT, averaged across subjects 

and used for direct comparison with the TSNs derived from the shorter sliding windows. 

 

2.2.3) Kʹmeans Clustering: 

Using the sliding window CCA approach, within a multi-subject dataset, several thousand images of 

connectivity are generated. (Specifically 11,940 and 25,272 for the self-paced and Sternberg studies 

respectively). This means that an automated process of grouping and classifying these images is 

desirable. K-means clustering (MacQueen, 1967) is method of vector quantisation which has been 

used in recent fMRI experiments (Allen et al., 2014; Liu and Duyn, 2013) to detect repeating patters 

of connectivity. If we assume a total of ݊௢ sliding windows across the experiment, then k-means 

partitions those ݊௢ connectivity images into ݇ states. To do this, we first note that the images exist 

in an ݂ dimensional space (where  ݂ represents the total number of voxels in the seed and test 

cluster combined). ݇ points are then inserted into this space to form the centre of derived clusters 

and the K-means algorithm looks to minimise the within cluster sum of squares of Euclidian distance 

to the mean, over multiple iterations. Mathematically:  minࡿ σ σ ฮࡵ௜ െ ೕ௞௝ୀଵࡿא೔ࡵ௝ฮଶࣆ       [1] 

Where ࡵ௜ represents the ݅th
 connectivity image and  ࣆ௝  is the mean of the points in each projected 

group, ࡿ௝. Physically, these groupings represent images depicting similar functional connectivity 

patterns which consistently reoccur. We term these repeating patterns transiently synchronising 

sub-networks (TSNs). Note that in what follows we chose ݇=8. 

 

2.2.4) Testing TSN robustness: 

Our primary hypothesis is that the derived TSNs are spatially distinct (from each other and from the 

static network) and robust across subjects and datasets. The method outlined above offers a means 
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to capture these spatial patterns. Statistical tests were then sought to validate their robustness. We 

devised three analyses: 

 

1) ͞MŝƐƐ-a-TSN͟ 

We first tested whether any of the 8 derived TSNs were redundant (i.e. not required to explain the 

data). To do this, a single CCA derived connectivity image was selected and its best fitting TSN 

selected. The percentage of variance in this image, explained by the best fitting (scaled) TSN, was 

then calculated. This process was repeated for all connectivity images within each subject, and the 

mean variance explained calculated. This analysis was repeated a further 8 times; on each iteration, 

a different TSN was removed from the basis set and replaced with the average network (generated 

as the mean across all connectivity images and subjects). We hypothesised that replacement of any 

one TSN with the average map would evoke a significant drop in variance explained. Significance was 

determined using a two-sided signed rank test of the null hypothesis that this difference originated 

from a distribution whose median is zero. The threshold for significance (p < 0.05) was Bonferroni 

corrected (to pcorrected < 0.0065) to account for multiple comparisons across the 8 TSNs. This test was 

carried out three times: On the self-paced dataset, on the Sternberg dataset, and finally on just the 

resting state phase of the self-paced dataset in order to determine whether any of the derived TSNs 

were only observable during the task. 

  

2) ͞MŝƐƐ-a-ƐƵďũĞĐƚ͟ 

We next assessed robustness across subjects by testing the hypothesis that TSN maps, derived via k-

means, explained the data significantly better than the canonical (static) network map. For this 

purpose, we first selected a subject and removed their data from the full dataset; k-means was then 

run on the remaining (N ʹ 1) subjects to derive a TSN ďĂƐŝƐ ƐĞƚ͘ A ͞ƐŚĂŵ͟ TSN basis set was also 

derived in which, rather than each connectivity image being assigned to a group via Equation 1, it 

was assigned randomly. Note that these ͞ƐŚĂŵ͟ ŵĂƉƐ ĂƌĞ ĐŽŵƉƵƚĞĚ ǁŝƚŚŽƵƚ ĐŽŶƐŝĚĞƌŝŶŐ ƚĞŵƉŽƌĂů 

structure in the measured connectivity (i.e. assuming stationarity), and for this reason we term them 

͞ƐƚĂƚŝĐ ƉƐĞƵĚŽ-ŶĞƚǁŽƌŬƐ͘͟ TŚŝƐ ƉƌŽĐĞƐƐ ŐĞŶĞƌĂƚĞĚ ƚǁŽ ďĂƐŝƐ ƐĞƚƐ͕ ďŽƚŚ ƵƐŝŶŐ N ʹ 1 subjects. These 

two basis sets were then used to explain the variance in the remaining subject. We reasoned that if 

the TSN maps were robust across subjects then they would explain significantly more variance in the 

ŵŝƐƐŝŶŐ ƐƵďũĞĐƚƐ͛ ĚĂƚĂ than static pseudo-networks. This analysis was repeated for all subjects, 

generating a set of values of variance explained. We then tested whether TSN maps explained more 

variance than static pseudo-networks across N iterations of the missing subject. 
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3) ͞CƌŽƐƐ-ĚĂƚĂƐĞƚ ǀĂůŝĚĂƚŝŽŶ͟ 

The above tests were run within datasets (i.e. either using Sternberg data only, or self-paced data 

only). However, if the TSNs derived using k-means are genuine transient networks that support 

sensorimotor function, then they should generalise to any task (or indeed the resting state). A cross-

dataset validation was therefore performed in which we used the TSN basis set from the self-paced 

experiment to explain the Sternberg data, and vice versa. The TSN basis set from the self-paced data 

was taken along with an equivalent set of 8 static pseudo-networks. We reasoned that if the TSN 

maps were not robust, the TSN basis set from the self-paced study would explain no more variance 

in the Sternberg data than the static pseudo-networks. A null distribution was formed via generation 

of 2000 separate basis sets based upon different realisations of the static pseudo-networks, and we 

tested our hypothesis that the genuine TSN set (from the self-paced data) would explain significantly 

more variance in the Sternberg data than the sham basis-sets. This analysis was then reversed, and 

the Sternberg basis set used to explain the self-paced data, employing an identical methodology. 

 

2.2.5) Task induced change in transiently synchronising sub-networks 

Our secondary hypothesis was that, on task initiation, efficient neural processing would favour 

recruitment of a specific set of sub-networks. To measure how a task affected the likelihood of 

occurrence of a network, for each TSN we first constructed a binary timecourse. This was computed 

across all task trials and subjects and was based on k-means grouping; it contained a 1 if the current 

window belonged to the TSN group of interest, or a 0 otherwise. This vector was summed across 

task trials (over all subjects) and divided by the total number of trials; the result is a timecourse 

showing the probability of a specific TSN being selected for any time window within a trial (see 

supplementary information Figure S1). Dividing these timecourses by the overall fraction of windows 

classified in the group enabled measurement of the fractional change in probability of observing any 

one network, at any time point within a trial. A deflection in these timecourses would highlight that 

the TSN in question was more, or less likely to be observed within that time window. 

 

Finally, a method was devised to confirm that any observed deflection in the probability timecourses 

was due to localised changes in functional connectivity within the TSN in question. This was achieved 

ǀŝĂ Ă ͚ƉŽŝnt-to-ƉŽŝŶƚ͛ ƚƌĂŶƐŝĞŶƚ ĐŽŶŶĞĐƚŝǀŝƚǇ ĂŶĂůǇƐŝƐ͘ TŽ ĐŽŵƉƵƚĞ ƉŽŝŶƚ-to-point connectivity, firstly, 

two points (a seed and test) were selected based upon the peaks in a TSN map; source timecourses 

were then estimated using the beamformer as described above. A sliding window was allowed to 

shift across the timecourses and a dynamic (univariate) leakage reduction applied within each 

window. Following leakage reduction, the amplitude envelope of both the seed and test timecourses 
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(within each window) was computed via Hilbert transformation and connectivity estimated, via 

(univariate) correlation, within each window. These connectivity timecourses were averaged across 

task trials within each individual subject. To allow for changes in the temporal scale of functional 

connectivity, this process was repeated for window widths ranging from 2 s to 48 s, in the case of 

the self-paced motor study, and 2 s to 10s in the case of the Sternberg study. (Note such variation in 

window widths is impractical for CCA due to computational load.) To determine the statistical 

significance of task-induced changes in connectivity, the mean variances explained in windows 

encapsulating the event of interest (the button press) and for windows only capturing rest, were 

computed and the difference calculated. This was repeated for each subject individually and 

statistical significance of the difference in measured connectivity between task and non-task 

windows was computed. 
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3) RESULTS 

Transiently synchronous sub-network generation and evaluation:  

 

Figure 2: Transiently synchronous sensorimotor sub-networks generated using two independent datasets. The 

left hand side (A) shows a 10-subject dataset in which participants executed an infrequent self-paced button 

press. The right hand side (B) shows an 11-subject dataset in which participants were involved in a Sternberg 

working memory task. Note the equivalence of the observed transient connectivity images. Note also the highly 

focal nature of the spatial topographies. (C-D)  Static connectivity images generated using a window spanning 

the entire experiment. 

Figure 2 shows TSN maps for the self-paced (A) and Sternberg (B) tasks. Our hypothesis that 

multiple, spatially distinct and focal TSNs would be observed is supported by Figure 2, which shows 

that spatial patterns representing transient functional connectivity differ in time. In the Self-paced 

dataset (Figure 2A), TSN1 covers bilateral primary motor and sensory cortex and extends inferior to 

S2. TSN2 only covers primary M1 and S1 regions whilst TSN5 captures only bilateral S2. TSN6 and 
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TSN8 separate anterior and posterior sensorimotor regions: assessment of the peak locations 

reveals MNI coordinates of (-36,24,60) mm and (40,-22,60) mm for TSN6 which equate to the left 

and right precentral gyri (Brodmann Area 4). MNI coordinates for TSN8 were (30,-38,58) mm and 

(34,-30,60) mm; the peak in right hemisphere is centred on postcentral gyrus (Brodmann area 3) and 

the peak in left hemisphere is less than 1 voxel from the postcentral gyrus (Brodmann area 3). This 

evidence shows that bilateral sensory and motor cortices form independent transient networks and 

our method facilitates their separation. In addition to positive correlations, negative correlations are 

also observed in TSN3, showing that the method captures windows in which the beta envelopes in 

the left and right sensorimotor strips are anti-correlated. Finally, TSN4 highlights a spatially 

asymmetric TSN (left M1/S1 and right S2) and TSN7 depicts a unilateral response. Results for the 

Sternberg (Figure 2B) task are similar (Figure 2A) and again include anti-correlated networks (TSN2 

and TSN3), bilateral S2 (TSN5), and a spatially asymmetric network (TSN6) covering left M1/S1 and 

right S2. Motor and sensory cortices (TSN7 and TSN4) are again separated. In addition to the clear 

similarity across these two completely independent experiments, note also the highly focal nature of 

the TSN maps.  

 

For comparison, Figures 2C and 2D show static connectivity images generated using the self-paced 

and Sternberg datasets respectively. These images were generated using the same CCA approach, 

but with a single time window capturing the entire experiment.  In contrast to the TSN maps, the 

static map is less spatially specific. Whilst clear foci are observed, they appear to spread across 

primary sensory and motor regions, and the map extends down to S2 (albeit at a lower threshold).  

Most importantly, the subtle spatial dynamics observed in the TSN measurements are missed by the 

static approach. 

 

TŚĞ ƌŽďƵƐƚŶĞƐƐ ŽĨ ĞĂĐŚ ŝŶĚŝǀŝĚƵĂů T“N ǁĂƐ ƚĞƐƚĞĚ ƵƐŝŶŐ Ă ͞ŵŝƐƐ-a-T“N͟ ĂŶĂůǇƐŝƐ͘ WĞ ƚĞƐƚĞĚ ŚŽǁ 

much variance in the no connectivity images could be explained by our TSN maps, and whether 

replacing a single TSN with a static network caused a significant drop in the variance explained. The 8 

TSNs in Figure 2A explained ͹ͳ േ ͵% of variance in the self-paced connectivity images. Replacing a 

single TSN with the static network gave rise to a significant (pcorrected<0.05) drop in explained variance 

for 6 of the 8 TSNs. The exceptions were TSN1 (pcorrected = 0.08) and TSN7 (no trend). In the case of 

TSN1, the spatial signature is similar to the canonical network and it is unsurprising that replacement 

evokes no significant drop in variance explained. TSN7 is unilateral and reflects close to zero 

connectivity, meaning that the canonical correlation between cortices when this mode was detected 

was 0.06±0.05 (considerably lower than all other modes which average > 0.2). Equivalent analysis 
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was applied to the resting state phase of the self-paced data; i.e. within data windows not capturing 

the infrequent motor task. Results were identical, showing that the TSNs are also a feature of resting 

state data. Likewise, the 8 maps in Figure 2B explained ͹͵ േ ͳ% of variance in the Sternberg images 

and again, replacing a TSN with the static network gave rise to a significant (pcorrected<0.05) drop in 

explained variance for 6 of the 8 TSNs. Once again exceptions were TSN1 (which resembles the static 

map) and the unilateral network (TSN8).  

 

‘ŽďƵƐƚŶĞƐƐ ŽĨ T“NƐ ŽǀĞƌ ƐƵďũĞĐƚƐ ǁĂƐ ƚĞƐƚĞĚ ďǇ Ă ͞ŵŝƐƐ-a-ƐƵďũĞĐƚ͟ ĂŶĂůǇƐŝƐ͘ HĞƌĞ͕ ǀĞĐƚŽƌ 

quantisation was applied to the connectivity images as before, but with a single subject missing. The 

resulting TSN maps were then used to explain variance in that missing subject. Running vector 

quantisation with a subject missing made little difference to the TSN morphology. In the self-paced 

data, TSN maps on 9 subjects were ͻͻǤ͸ േ ͲǤͶ% correlated with the maps in Figure 2A (10 subjects). 

For the Sternberg data, TSN maps made using 10 subjects were ͻͻǤͺ േ ͲǤʹ% correlated with those in 

Figure 2B (11 subjects). The TSN maps generated with a missing subject explained ͸ͻ േ ͵% of 

ǀĂƌŝĂŶĐĞ ŝŶ ƚŚĞ ŽŵŝƚƚĞĚ ƐƵďũĞĐƚƐ͛ ĚĂƚĂ ŝŶ ƚŚĞ ƐĞůĨ-paced experiment, and ͹ʹ േ ʹ% in the Sternberg 

experiment. Replacement of the TSNs with an equivalent number of static pseudo-networks, gave 

rise to a significant drop in variance explained from ͸ͻ േ ͵% to Ͷ͹ േ ͹% for the self-paced data (p = 

0.002) and from ͹ʹ േ ʹ% to ͵ͻ േ ʹ% for the Sternberg data (p = 0.001). This confirmed not only 

robustness over subjects, but also that the TSNs were a significantly better representation of 

transient connectivity than canonical static networks. 

 

As a final test, we reasoned that if TSN maps represent transient networks that are a fundamental 

component of sensorimotor processing, then they should generalise to any task. Specifically a TSN 

basis set from task A should better explain the connectivity in task B than any static network. We 

therefore employed our cross dataset validation, using the self-paced TSNs (Figure 2A) as training 

data to predict the Sternberg connectivity images, and the Sternberg TSNs (Figure 2B) as training 

data to predict the self-paced connectivity images. These results were compared to equivalent 

within dataset measurements. ͹͵ േ ͳ% of variance in the Sternberg data was predicted by the 

Sternberg derived TSNs, and this was reduced marginally to ͹ͳ േ ʹ% when using the self-paced TSNs 

as training data. Likewise, ͹ͳ േ ͵% of variance in the self-paced data was explained by the self-

paced TSN maps, which was reduced to ͸ͻ േ ʹ% when using the Sternberg TSN maps as training 

data. The maximum variance explained in the Sternberg data across 2000 iterations of static pseudo-

networks was 40.8%. Similarly, the maximum variance explained in the self-paced data across 2000 

iterations of static pseudo-networks was 41.7%. This shows clearly that TSNs, even from a 
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completely independent dataset, represent a better model of transient connectivity than the 

canonical network.  

 

A post-hoc concern was that the significant differences in variance explained between TSNs and 

static pseudo-networks may be driven entirely by the transient anti-correlated networks, or by those 

ŶĞƚǁŽƌŬƐ ĚĞĞŵĞĚ ƵŶŝŵƉŽƌƚĂŶƚ ďǇ ŽƵƌ ͚ŵŝƐƐ-a-T“N͛ ĂŶĂůǇƐŝƐ ;Ğ͘Ő͘ T“Nϭ ĂŶĚ T“Nϳ ŝŶ Figure 2A; see 

above). For this reason a new set of static pseudo-networks were generated: this new training set 

contained a mix of the TSN maps from the real basis set, and pseudo-networks (again generated via 

random assignment of group number to the remaining training data). We found that TSNs 2, 4, 5, 6 

and 8 in Figure 2A explained significantly more variance in the Sternberg data than equivalent 

pseudo-networks, and likewise TSNs 4, 5, 6 and 7 in Figure 2B explained significantly more variance 

in the self-paced data than equivalent static pseudo-networks (see Figure 3).  

 

The above analyses show that the canonical sensorimotor network, far from being a single entity, is 

composed of multiple transiently synchronous (and spatially focussed) patterns of functional 

connectivity where the involved nodes rapidly change their connectivity - from being positively 

correlated, uncorrelated to strongly anti-correlated. These patterns explain MEG connectivity data 

significantly better than static networks and are not only robust across subjects, but are also 

reproducible in two independent experiments. 
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Figure 3: A) Schematic representation of the process to generate both the real TSNs, and a series of static pseudo-networks to test the null hypothesis. Real TSNs are 

generated based on the state allocation of individual connectivity images from the k-means clustering process, whislt for the pseudo static networks, states are assigned 

assuming stationarity. B) The resulting variance explained in the Sternberg connectivity data by 2000 permutations of the static pseudo networks (histogram) and the TSNs 

from both the self-paced and Sternberg datasets. Note that using self-paced rather than Sternberg TSNs to explain the Sternberg data does not result in a significant drop in 

variance explained, thus highlighting robustness of the TSN maps over experiments. Note also that the null hypothesis is rejected. 
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Task induced change in functional connectivity:  

Timecourses were generated to measure task induced changes in the probability of observing a 

specific TSN. An increase in these timecourses means that a TSN is more likely to be observed at a 

specific time point; a decrease means the TSN is less likely to be observed. Figure 4A shows 

examples for self-paced data: timecourses represent the fractional change in probability for two 

selected TSNs. TSN6, which covers bilateral M1, exhibits a significant (p<0.05) change around the 

time of the button press showing that we are ~200% more likely to observe this TSN during a single 

finger movement (with one hand), compared to rest. Likewise TSN8, which covers bilateral sensory 

cortex also exhibits a significant (p<0.05) task induced response. Similar results were observed for 

the Sternberg data and are shown in Figure 4B. Here TSN7 (again bilateral M1) exhibits a significant 

(p<0.05) change in occupancy around the time of the button press (ݐҧ = 8.41 s). The lower panel also 

shows probability timecourses, but contrasts trials with a fast reaction time (8.21 ± 0.09 s), against 

trials with a slow reaction time (8.78 ± 0.59 s). Note the difference in time to peak and longevity of 

response. These results support the hypothesis that on task initiation the relative occupancy of TSN 

states is altered.  

 

Figure 4: Task induced fractional change in TSN probability. A) shows the self-paced data. Note that only the 

two networks that exhibit a significant task induced change are shown. TSN6 covers bilateral motor cortex and 

TSN8 captures bilateral sensory cortex. B) shows the Sternberg data. The upper panel shows the trial average 

occupancy change for TSN7. The lower panel contrasts trials with a fast reaction time (8.21 ± 0.09 s, blue trace) 

with trials with a slow reaction time (8.78 ± 0.59 s, red trace) see supplementary Figures S2 and S3 for further 

results. 
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Finally, Figure 5 probes the spatial and temporal scales of task induced change in functional 

connectivity. Figures 5A and 5B show trial averaged canonical correlation between clusters covering 

the sensorimotor network. The timecourses shown represent change in total inter-hemispheric 

functional connectivity within the sensorimotor system. Note that in both the self-paced and 

Sternberg experiments, a transient increase in connectivity between clusters is observable around 

the time of the button press. However, this increase is modest, as evidenced by the bar charts which 

show mean connectivity between clusters in windows capturing the button press compared to those 

capturing resting state. In the self-paced data, the variance explained in the test cluster by the seed 

was greater by 11±9% in the windows containing the button press, whilst in the Sternberg data the 

same measure increased by 9±3%; in both cases the change failed to reach statistical significance 

across subjects. Figures 5C and 5D show measured task induced change in functional connectivity 

between point locations selected on the basis of the TSN maps. Specifically, results show functional 

connectivity between primary motor areas (TSN6 for self-paced data and TSN7 in Sternberg data). 

Point-to-point connectivity is assessed using a univariate sliding window approach. Multiple window 

widths are shown collectively in the figure. Connectivity is averaged over task trials; the x-axis shows 

time relative to the button press, the y-axis shows log10(window width) and the colour shows 

connectivity strength (windowed correlation between beta envelope timecourses). The bar graphs 

show variance explained by the seed location at the test location. Windows encapsulating the 

button press are contrasted with those not encapsulating the button press.  Figures 4 and 5 are 

complementary. The increase in occupancy of specific TSNs during motor behaviour (Figure 4) shows 

that efficient neural processing requires dominance of a specific sub-network to support movement. 

During movement, sensorimotor network functional connectivity is thus dominated by a small 

number of highly focal networks. This is evidenced by the increased functional connectivity between 

bilateral M1 in Figures 5C and 5D. However, this focal increase has relatively little effect on inter-

hemispheric connectivity within the wider network (Figures 5A and 5B).  
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Figure 5: Task induced change in functional connectivity at differing spatial and temporal scales. A/B) 

Connectivity between clusters. Timecourses show trial averaged response whereas bar charts show mean 

variance explained in the test cluster by the seed cluster, in windows capturing the button press compared to 

those not capturing the button press. C/D) Univariate connectivity between point locations. Pairs of voxels were 

selected based upon TSN6 (self-paced) and TSN7 (Sternberg). In the left hand plot the x-axis shows time relative 

to the button press, the y axis shows log10(window width) and the colour shows the strength of connectivity 

(correlation between the Hilbert envelopes of beta oscillations, within the window). The bar graphs show 

variance explained by the seed location at the test location in windows encapsulating or not encapsulating the 

button press. 
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DISCUSSION 

Using a new method for imaging transient patterns of functional connectivity, we have shown that 

the static metrics most often used to characterise coupling between network nodes fail to provide a 

complete picture of the complex spatio-temporal dynamics within the network they are attempting 

to describe. By exploiting the excellent time resolution of MEG, with advanced leakage reduction 

and multivariate connectivity modelling, we were able to show that the static sensorimotor network 

can be decomposed into multiple dynamically changing sub-networks. These sub-networks have 

been observed without the use of statistical priors and with unsurpassed spatiotemporal accuracy. 

We have shown that these TSNs are not only a common feature across subjects, but are also a 

common feature across completely independent multi-subject experiments. Indeed the evidence is 

that the commonly observed static network oversimplifies the ground truth: our data show clearly 

that individual areas of the larger network progress through stages of highly correlated, 

uncorrelated and even strongly anti-correlated activity. In addition we have shown that TSNs are a 

consistent feature of the resting state, and that task initiation serves to bias the likelihood of a 

particular TSN being recruited. 

 

The observed spatial patterns represent physiologically interpretable networks of connectivity. Most 

noteworthy, our results show that, even outside a task, functionally specific and spatially focal brain 

areas can be extracted blindly. In some cases broad complexes of bilateral homologous regions were 

identified: For example in both studies the most commonly occurring TSN comprised bilateral M1 

and S1, extending down to bilateral S2. Other networks revealed highly focal complexes, including 

bilateral primary motor area (M1), bilateral primary somatosensory area (S1) and bilateral secondary 

somatosensory area (S2). In particular, the clear separation of motor (M1) and somatosensory (S1) 

cortices into two separate networks, despite these regions being separated by only a few 

millimetres, shows the spatial accuracy of the technique. The extraction of such neuroanatomical 

detail from MEG data is rare, particularly in the resting state. The existence of anti-correlated 

networks in both tasks suggests a transiently occurring antagonistic relationship between beta 

envelopes within some time windows. Such anti-correlation may result from random mind-

wandering; for instance it is known that attending to a particular location in the body causes anti-

correlated shifts in the amplitude of somatosensory beta band oscillations within the two 

hemispheres (Bauer et al., 2012; van Ede et al., 2014). Likewise imagining movement, or even 

specific body parts can cause similar effects (Brinkman et al., 2014; de Lange et al., 2008). The 

existence of an asymmetric network (covering right S2 and left S1/M1) is also interesting. It is known 

that transient connections between left M1/S1 and right S2 occur during tactile stimulus processing 
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(Simoes et al., 2003) and that connectivity between S1 and S2 has been associated with subjective 

perception (Ploner et al., 2009). This observation is therefore physiologically interpretable.  

 

An important point is that, although the results presented were obtained in the context of two 

ĚŝƐƉĂƌĂƚĞ ƉĂƌĂĚŝŐŵƐ͕ ŶĞŝƚŚĞƌ ǁĞƌĞ ͞ƉƵƌĞ ƌĞƐƚŝŶŐ ƐƚĂƚĞ͘͟ IŶ ŽƵƌ ƐĞůĨ-paced task, participants were 

pressing a button every 30s but for the remainder of the period participants remained at rest. This 

allowed for confirmation of the existence of TSNs with the brain (apparently) at rest, and 

simultaneously enabled validation of our methodology for robustly uncovering task induced 

temporal fluctuations of sensorimotor sub-networks. This said, it is conceivable that differences may 

result between the resting phase of our self-ƉĂĐĞĚ ƚĂƐŬ͕ ĂŶĚ ͚ƉƵƌĞ͛ ƌĞƐƚŝŶŐ ƐƚĂƚĞ ĚĂƚĂ ;ŝŶ ǁŚŝĐŚ 

ƐƵďũĞĐƚƐ ůŝĞ ŝŶ Ă ƐĐĂŶŶĞƌ ĂŶĚ ͞ƚŚŝŶŬ ŽĨ ŶŽƚŚŝŶŐ͟Ϳ͘ TŽ ĂĐĐŽƵŶƚ ĨŽƌ this limitation, our methodology was 

ĂůƐŽ ĂƉƉůŝĞĚ ƚŽ ϭϬ ŵŝŶƵƚĞ ͞ƉƵƌĞ ƌĞƐƚ͟ ƌĞĐŽƌĚŝŶŐƐ ŝŶ 10 subjects (for results see supplementary Figure 

S4). Once again TSNs were largely similar with our methodology separating M1, S1 and S2 as well as 

identifying anti-ĐŽƌƌĞůĂƚĞĚ ĂŶĚ ĂƐ ĂƐǇŵŵĞƚƌŝĐ ŶĞƚǁŽƌŬƐ͘ TŚŝƐ͕ ĐŽƵƉůĞĚ ǁŝƚŚ ŽƵƌ ƐƚĂƚŝƐƚŝĐĂů ;͞ŵŝƐƐ-a-

T“N͟Ϳ ĂŶĂůǇƐĞƐ ƐŚŽǁƐ ĐŽŶǀŝŶĐŝŶŐůǇ ƚŚĂƚ ƚŚĞ T“NƐ ƉƌĞƐĞŶƚĞĚ ĂƌĞ Ă ĐŽŶƐŝƐƚĞŶƚ ĨĞĂƚƵƌĞ ŽĨ ƚŚĞ ƌĞƐƚŝŶŐ 

state sensorimotor system. 

 

Our secondary hypothesis was that, on initiation of a motor task, efficient neural processing would 

favour recruitment of a specific set of transiently synchronising sub-networks. We have shown that 

functional connectivity between sub-network nodes in bilateral M1 consistently and transiently 

changes around the time of overt motor behaviour. This is evidenced by i) an increase in occupancy 

of the M1 TSN (Figure 4) and ii) an increase in transient univariate connectivity measured between 

bilateral M1 (Figures 5C and 5D). Interestingly, these highly focal changes do not result in a drastic 

overall change in inter-hemispheric functional connectivity within the sensorimotor network (Figures 

5A and 5B). At a practical level this is important: if region to region connectivity is measured the 

ŽǀĞƌĂůů ĞĨĨĞĐƚ ŽĨ Ă ƚĂƐŬ ŵĂǇ ďĞ ͚ǁĂƐŚĞĚ ŽƵƚ͛ ĂĐƌŽƐƐ ǀŽǆĞůƐ͘ HŽǁĞǀĞƌ͕ ŝĨ ƉŽŝŶƚ-to-point connectivity is 

assessed, this will likely result in significant task induced change. However, the latter necessarily 

relies on a-priori selection of the precise points to be considered; our TSN analysis, for the first time, 

offers a principled means to assess task induced changes in network connectivity without such 

confounds. At a more theoretical level this finding offers an interpretation of task induced 

connectivity. Figure 2 shows that sensorimotor network connectivity is maintained via several TSNs 

and, at rest, all of these spatial signatures, including those identified as relating to movement 

contribute to the high level of functional connectivity between the left and right sensorimotor strip. 

We speculate that active processing of a motor response simply involves the transient 
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reorganisation of the resting state TSNs. This implies that active processing is not an additive 

process, but rests on simple spatial reorganization of the wider sensorimotor network. Such a model 

explains the differences in connectivity across spatial scales shown in Figure 5 and should be further 

tested in future studies of task induced functional connectivity change using the same methodology. 

 

Technical Considerations 

The methodology that we introduce is critically dependent on multiple factors, including selection of 

the underlying source localisation algorithm, and selection of a parameter set for the CCA and k-

means algorithms. These important factors warrant further discussion.  

 

At the core of the method is the beamformer spatial filter, however it is important to understand 

that any source localisation technique (e.g. Minimum Norm, dSPM) could be used. It is well known 

that beamforming supresses spatially separate but temporally correlated sources (Brookes et al., 

2007) and superficially this may appear as a confound for connectivity metrics which actively seek 

temporal correlation between sources. However, the beamformer has been used successfully in 

multiple studies of functional connectivity (Brookes et al., 2011a; Brookes et al., 2011b; Hipp et al., 

2012), and could be argued to be the source localisation method of choice for such measurements. 

To understand this, first note that for beamformer suppression to take place, zero time lagged 

correlation must exist between source signals, whereas our metrics of connectivity measure 

temporal correlation between oscillatory envelopes. Importantly, two envelopes can be perfectly 

correlated whilst the underlying signals remain orthogonal. In fact, zero-time-lag correlated signals 

potentially reflect source leakage; indeed our leakage reduction algorithm actively aims to remove 

such effects. It therefore follows that, rather than the beamformer suppression of correlated 

sources acting as a confound, it actually helps to supress leakage. Beamforming also offers excellent 

interference rejection properties and good spatial resolution, both of which are attractive when 

measuring functional connectivity. These important points should be noted when choosing 

underlying source reconstruction methodology.  

 

As with all neuroimaging methods, our technique requires selection of a parameter set, with 

parameters including the number of eigenmodes d, the time frequency window size, the cluster 

location/extent and the number of spatial modes, k. There is no hard rule for selection of these 

parameters, and they will ultimately depend on the scientific question to be addressed. However, 

technical limitations also underlie parameter selection and this deserves discussion. In the present 

work we aimed to identify multiple TSNs in the sensorimotor system, with regions of interest 
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covering bilateral sensory cortex and motor cortices. The previously published work in this area 

allowed for narrowing of the frequency range of interest to the beta band. This meant that both 

cluster size/location and frequency range was set directly by the neurophysiological question of 

interest. Selection of the number of eigenmodes, d, involves a direct trade-off between the cluster 

size and the time frequency window size used in the sliding window analysis. d must be sufficiently 

high to allow for expression of all of the signal features observable within a cluster (ideally d would 

be equal to the number of resolution elements within the cluster). Practically this can be quantified 

by calculating the variance in the original data explained by features retained; here selecting d = 

4 explained 77 ± 3 % of data (average across all subjects and clusters). Selection of d also impacts on 

the time window selection. As a rule of thumb, one requires more than 4d independent temporal 

observations within the sliding time window for the multivariate test to be reliable (i.e. if d becomes 

large then the number of time points in the window must also be large). Here we chose d=4 and we 

employed a minimum window width of 3s: The number of independent time samples in an envelope 

signal can be approximated as B୛Ǽݐ where B୛ represents signal bandwidth (17 Hz for the 13-30 

Hz beta band) and ȟݐ is the window width. This means that within any one 3s time window we have 

~51 independent time points. For the present paper this is well above the lower limit of 4d = 16, in 

order to ensure reliability of the test. In principle, using the data presented here, a 1s time window 

should be possible. However, if the frequency band was reduced (e.g. if we looked at the alpha band 

where the bandwidth is ~5 Hz) then either d must be reduced or the time window increased. Finally, 

the number of states to extract via k-means (k) must also be selected. Here we chose k=8, which was 

set empirically. Whilst this potentially reflects a limitation, such empirical selection not uncommon 

and is analogous to methods employing ICA, in which number of components is often set by visual 

inspection of the output. Most ŝŵƉŽƌƚĂŶƚůǇ͕ ƵƐŝŶŐ ŽƵƌ ͚ŵŝƐƐ-a-T“N͛ ĂŶĂůǇƐŝƐ͕ ƚŚĞ ĐŽŶƚƌŝďƵƚŝŽŶ ŽĨ ĞĂĐŚ 

TSN to the overall explanation of variance in the connectivity images was assessed quantitatively. In 

this way, we were able to show whether removal of specific TSNs impacted significantly the variance 

explained in connectivity images. This analysis is key to avoid over fitting and should be undertaken 

by researchers using this technique. 

 

As a final note, we should mention that in this paper, following CCA we extract only the first of d 

eigenmodes of connectivity to take forward to the subsequent k-means analysis. However, this 

reflects a potential limitation. For any single window there are d-1 further modes available that are 

(currently) ignored. These extra eigenmodes correspond to extra orthogonal mixtures of the 

features in the seed and test clusters that may also describe transient networks. It is possible (even 

likely) that the TSN maps shown in Figure 2 might also be represented in these higher order 
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eigenmodes.  For example, if a bilateral S2 network in window 1 becomes dominated by a bilateral 

“ϭ ŶĞƚǁŽƌŬ ŝŶ ǁŝŶĚŽǁ Ϯ͕ ŝƚ ŝƐ ůŝŬĞůǇ ƚŚĂƚ ƚŚĞ “Ϯ ŶĞƚǁŽƌŬ ŚĂƐ ŶŽƚ ͚ĚŝƐĂƉƉĞĂƌĞĚ͕͛ ďƵƚ ƌĂƚŚĞƌ ƉĞƌƐŝƐƚƐ Ăƚ Ă 

lower level of functional connectivity and may well be represented by the extra eigenmodes. 

Harnessing these modes, and incorporating them into k-means clustering, would not only generate 

further insights and possibly allow tracking of individual transiently synchronising networks in time, 

but may also increase the effective number of averages contributing to the TSN maps, hence 

improve signal to noise. Future studies may wish to account for this. 

 

CONCLUSION 

Resting state networks are of fundamental importance to neuroscience with evidence suggesting 

that they are integral to brain function and perturbed in pathology. However, the temporal 

dynamics of the functional connectivities underlying RSN structure are poorly understood. We have 

presented a framework to further our understanding of RSN dynamics. Using MEG, we have shown 

that the canonical sensorimotor network can be decomposed into transiently synchronising sub-

networks, recruitment of which depends on current mental state. These sub-networks are highly 

focal, show rich temporal dynamics, and the interpretation is that the larger canonical network 

reflects only a temporal aggregate of transient functional sub-networks. The methodology 

developed opens new frontiers to study RSN dynamics; for example our technique could be applied 

to study other RSNs (e.g. DMN), between network connectivity, other frequency bands, different 

tasks, and patient populations. In this way, we have provided a new dimension in which to reveal the 

spatial, temporal and spectral signature of the human connectome in health and disease. 
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