180 research outputs found
How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers
Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
Induced Pluripotent Stem Cell Lines Derived from Equine Fibroblasts
The domesticated horse represents substantial value for the related sports and recreational fields, and holds enormous potential as a model for a range of medical conditions commonly found in humans. Most notable of these are injuries to muscles, tendons, ligaments and joints. Induced pluripotent stem (iPS) cells have sparked tremendous hopes for future regenerative therapies of conditions that today are not possible to cure. Equine iPS (EiPS) cells, in addition to bringing promises to the veterinary field, open up the opportunity to utilize horses for the validation of stem cell based therapies before moving into the human clinical setting. In this study, we report the generation of iPS cells from equine fibroblasts using a piggyBac (PB) transposon-based method to deliver transgenes containing the reprogramming factors Oct4, Sox2, Klf4 and c-Myc, expressed in a temporally regulated fashion. The established iPS cell lines express hallmark pluripotency markers, display a stable karyotype even during long-term culture, and readily form complex teratomas containing all three embryonic germ layer derived tissues upon in vivo grafting into immunocompromised mice. Our EiPS cell lines hold the promise to enable the development of a whole new range of stem cell-based regenerative therapies in veterinary medicine, as well as aid the development of preclinical models for human applications. EiPS cell could also potentially be used to revive recently extinct or currently threatened equine species
Search for lepton flavor violating decays of a heavy neutral particle in p-pbar collisions at root(s)=1.8 TeV
We report on a search for a high mass, narrow width particle that decays
directly to e+mu, e+tau, or mu+tau. We use approximately 110 pb^-1 of data
collected with the Collider Detector at Fermilab from 1992 to 1995. No evidence
of lepton flavor violating decays is found. Limits are set on the production
and decay of sneutrinos with R-parity violating interactions.Comment: Figure 2 fixed. Reference 4 fixed. Minor changes to tex
Search for Kaluza-Klein Graviton Emission in Collisions at TeV using the Missing Energy Signature
We report on a search for direct Kaluza-Klein graviton production in a data
sample of 84 of \ppb collisions at = 1.8 TeV, recorded
by the Collider Detector at Fermilab. We investigate the final state of large
missing transverse energy and one or two high energy jets. We compare the data
with the predictions from a -dimensional Kaluza-Klein scenario in which
gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for
=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71
TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure
Polychlorinated biphenyls, cytochrome P450 1A1 (CYP1A1) polymorphisms, and breast cancer risk among African American women and white women in North Carolina: a population-based case-control study
INTRODUCTION: Epidemiologic studies have not shown a strong relationship between blood levels of polychlorinated biphenyls (PCBs) and breast cancer risk. However, two recent studies showed a stronger association among postmenopausal white women with the inducible M2 polymorphism in the cytochrome P450 1A1 (CYP1A1) gene. METHODS: In a population-based case-control study, we evaluated breast cancer risk in relation to PCBs and the CYP1A1 polymorphisms M1 (also known as CYP1A1*2A), M2 (CYP1A1*2C), M3 (CYP1A1*3), and M4 (CYP1A1*4). The study population consisted of 612 patients (242 African American, 370 white) and 599 controls (242 African American, 357 white). RESULTS: There was no evidence of strong joint effects between CYP1A1 M1-containing genotypes and total PCBs in African American or white women. Statistically significant multiplicative interactions were observed between CYP1A1 M2-containing genotypes and elevated plasma total PCBs among white women (P value for likelihood ratio test = 0.02). Multiplicative interactions were also observed between CYP1A1 M3-containing genotypes and elevated total PCBs among African American women (P value for likelihood ratio test = 0.10). CONCLUSIONS: Our results confirm previous reports that CYP1A1 M2-containing genotypes modify the association between PCB exposure and risk of breast cancer. We present additional evidence suggesting that CYP1A1 M3-containing genotypes modify the effects of PCB exposure among African American women. Additional studies are warranted, and meta-analyses combining results across studies will be needed to generate more precise estimates of the joint effects of PCBs and CYP1A1 genotypes
Systems biology of platelet-vessel wall interactions
Platelets are small, anucleated cells that participate in primary hemostasis by forming a hemostatic plug at the site of a blood vessel's breach, preventing blood loss. However, hemostatic events can lead to excessive thrombosis, resulting in life-threatening strokes, emboli, or infarction. Development of multi-scale models coupling processes at several scales and running predictive model simulations on powerful computer clusters can help interdisciplinary groups of researchers to suggest and test new patient-specific treatment strategies
Entanglement entropy of black holes
The entanglement entropy is a fundamental quantity which characterizes the
correlations between sub-systems in a larger quantum-mechanical system. For two
sub-systems separated by a surface the entanglement entropy is proportional to
the area of the surface and depends on the UV cutoff which regulates the
short-distance correlations. The geometrical nature of the entanglement entropy
calculation is particularly intriguing when applied to black holes when the
entangling surface is the black hole horizon. I review a variety of aspects of
this calculation: the useful mathematical tools such as the geometry of spaces
with conical singularities and the heat kernel method, the UV divergences in
the entropy and their renormalization, the logarithmic terms in the
entanglement entropy in 4 and 6 dimensions and their relation to the conformal
anomalies. The focus in the review is on the systematic use of the conical
singularity method. The relations to other known approaches such as 't Hooft's
brick wall model and the Euclidean path integral in the optical metric are
discussed in detail. The puzzling behavior of the entanglement entropy due to
fields which non-minimally couple to gravity is emphasized. The holographic
description of the entanglement entropy of the black hole horizon is
illustrated on the two- and four-dimensional examples. Finally, I examine the
possibility to interpret the Bekenstein-Hawking entropy entirely as the
entanglement entropy.Comment: 89 pages; an invited review to be published in Living Reviews in
Relativit
Precision top-quark mass measurement in the lepton plus jets topology in p(p)over-bar collisions at root s=1.96 TeV
We report two measurements of the top-quark mass M-top using the CDF II detector at the Fermilab Tevatron in a 318 pb(-1) data sample of t (t) over bar events in the lepton+jets final state. One method uses an event-based likelihood technique resulting in M-top=173.2(-2.4)(+2.6)(stat)+/- 3.2(syst) GeV/c(2) or 173.2(-4.0)(+4.1) GeV/c(2). The second method reconstructs a top-quark mass in each event using the measured invariant mass of the hadronically decaying W boson to constrain the jet energy scale to obtain a value for M-top of 173.5(-3.6)(+3.7)(stat)+/- 1.3(syst) GeV/c(2) or 173.5(-3.8)(+3.9) GeV/c(2). We take the latter, which is more precise, as our result
Search for excited electrons singly produced in proton–proton collisions at \sqrt{s} = 13 TeV with the ALAS experiment at the LHC
A search for excited electrons produced in pp collisions at s√ = 13 TeV via a contact interaction qq¯→ee∗ is presented. The search uses 36.1 fb −1 of data collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider. Decays of the excited electron into an electron and a pair of quarks ( eqq¯ ) are targeted in final states with two electrons and two hadronic jets, and decays via a gauge interaction into a neutrino and a W boson ( νW ) are probed in final states with an electron, missing transverse momentum, and a large-radius jet consistent with a hadronically decaying W boson. No significant excess is observed over the expected backgrounds. Upper limits are calculated for the pp→ee∗→eeqq¯ and pp→ee∗→eνW production cross sections as a function of the excited electron mass me∗ at 95% confidence level. The limits are translated into lower bounds on the compositeness scale parameter Λ of the model as a function of me∗ . For me∗<0.5 TeV , the lower bound for Λ is 11 TeV . In the special case of me∗=Λ , the values of me∗<4.8 TeV are excluded. The presented limits on Λ are more stringent than those obtained in previous searches
- …