265 research outputs found

    Study protocol to investigate the effect of a lifestyle intervention on body weight, psychological health status and risk factors associated with disease recurrence in women recovering from breast cancer treatment

    Get PDF
    Background Breast cancer survivors often encounter physiological and psychological problems related to their diagnosis and treatment that can influence long-term prognosis. The aim of this research is to investigate the effects of a lifestyle intervention on body weight and psychological well-being in women recovering from breast cancer treatment, and to determine the relationship between changes in these variables and biomarkers associated with disease recurrence and survival. Methods/design Following ethical approval, a total of 100 patients will be randomly assigned to a lifestyle intervention (incorporating dietary energy restriction in conjunction with aerobic exercise training) or normal care control group. Patients randomised to the dietary and exercise intervention will be given individualised healthy eating dietary advice and written information and attend moderate intensity aerobic exercise sessions on three to five days per week for a period of 24 weeks. The aim of this strategy is to induce a steady weight loss of up to 0.5 Kg each week. In addition, the overall quality of the diet will be examined with a view to (i) reducing the dietary intake of fat to ~25% of the total calories, (ii) eating at least 5 portions of fruit and vegetables a day, (iii) increasing the intake of fibre and reducing refined carbohydrates, and (iv) taking moderate amounts of alcohol. Outcome measures will include body weight and body composition, psychological health status (stress and depression), cardiorespiratory fitness and quality of life. In addition, biomarkers associated with disease recurrence, including stress hormones, estrogen status, inflammatory markers and indices of innate and adaptive immune function will be monitored. Discussion This research will provide valuable information on the effectiveness of a practical, easily implemented lifestyle intervention for evoking positive effects on body weight and psychological well-being, two important factors that can influence long-term prognosis in breast cancer survivors. However, the added value of the study is that it will also evaluate the effects of the lifestyle intervention on a range of biomarkers associated with disease recurrence and survival. Considered together, the results should improve our understanding of the potential role that lifestyle-modifiable factors could play in saving or prolonging lives

    Religious Factors and Hippocampal Atrophy in Late Life

    Get PDF
    Despite a growing interest in the ways spiritual beliefs and practices are reflected in brain activity, there have been relatively few studies using neuroimaging data to assess potential relationships between religious factors and structural neuroanatomy. This study examined prospective relationships between religious factors and hippocampal volume change using high-resolution MRI data of a sample of 268 older adults. Religious factors assessed included life-changing religious experiences, spiritual practices, and religious group membership. Hippocampal volumes were analyzed using the GRID program, which is based on a manual point-counting method and allows for semi-automated determination of region of interest volumes. Significantly greater hippocampal atrophy was observed for participants reporting a life-changing religious experience. Significantly greater hippocampal atrophy was also observed from baseline to final assessment among born-again Protestants, Catholics, and those with no religious affiliation, compared with Protestants not identifying as born-again. These associations were not explained by psychosocial or demographic factors, or baseline cerebral volume. Hippocampal volume has been linked to clinical outcomes, such as depression, dementia, and Alzheimer's Disease. The findings of this study indicate that hippocampal atrophy in late life may be uniquely influenced by certain types of religious factors

    Hippocampal volume in early onset depression

    Get PDF
    BACKGROUND: Abnormalities in limbic structures have been implicated in major depressive disorder (MDD). Although MDD is as common in adolescence as in adulthood, few studies have examined youth near illness onset in order to determine the possible influence of atypical development on the pathophysiology of this disorder. METHODS: Hippocampal volumes were measured in 17 MDD subjects (age = 16.67 ± 1.83 years [mean ± SD]; range = 13 – 18 years) and 17 age- and sex-matched healthy controls (16.23 ± 1.61 years [mean ± SD]; 13 – 18 years) using magnetic resonance imaging (MRI). RESULTS: An analysis of covariance revealed a significant difference between MDD and control subjects (F = 8.66, df = 1, 29, P = 0.006). This was more strongly localized to the left hippocampus (P = 0.001) than the right hippocampus (P = 0.047). CONCLUSIONS: Our findings provide new evidence of abnormalities in the hippocampus in early onset depression. However, our results should be considered preliminary given the small sample size studied

    Regional cortical volumes and congenital heart disease: a MRI study in 22q11.2 deletion syndrome

    Get PDF
    Children with congenital heart disease (CHD) who survive surgery often present impaired neurodevelopment and qualitative brain anomalies. However, the impact of CHD on total or regional brain volumes only received little attention. We address this question in a sample of patients with 22q11.2 deletion syndrome (22q11DS), a neurogenetic condition frequently associated with CHD. Sixty-one children, adolescents, and young adults with confirmed 22q11.2 deletion were included, as well as 80 healthy participants matched for age and gender. Subsequent subdivision of the patients group according to CHD yielded a subgroup of 27 patients with normal cardiac status and a subgroup of 26 patients who underwent cardiac surgery during their first years of life (eight patients with unclear status were excluded). Regional cortical volumes were extracted using an automated method and the association between regional cortical volumes, and CHD was examined within a three-condition fixed factor. Robust protection against type I error used Bonferroni correction. Smaller total cerebral volumes were observed in patients with CHD compared to both patients without CHD and controls. The pattern of bilateral regional reductions associated with CHD encompassed the superior parietal region, the precuneus, the fusiform gyrus, and the anterior cingulate cortex. Within patients, a significant reduction in the left parahippocampal, the right middle temporal, and the left superior frontal gyri was associated with CHD. The present results of global and regional volumetric reductions suggest a role for disturbed hemodynamic in the pathophysiology of brain alterations in patients with neurodevelopmental disease and cardiac malformations

    MAP4K3 Is a Component of the TORC1 Signalling Complex that Modulates Cell Growth and Viability in Drosophila melanogaster

    Get PDF
    Background: MAP4K3 is a conserved Ser/Thr kinase that has being found in connection with several signalling pathways, including the Imd, EGFR, TORC1 and JNK modules, in different organisms and experimental assays. We have analyzed the consequences of changing the levels of MAP4K3 expression in the development of the Drosophila wing, a convenient model system to characterize gene function during epithelial development. Methodology and Principal Findings: Using loss-of-function mutants and over-expression conditions we find that MAP4K3 activity affects cell growth and viability in the Drosophila wing. These requirements are related to the modulation of the TORC1 and JNK signalling pathways, and are best detected when the larvae grow in a medium with low protein concentration (TORC1) or are exposed to irradiation (JNK). We also show that MAP4K3 display strong genetic interactions with different components of the InR/Tor signalling pathway, and can interact directly with the GTPases RagA and RagC and with the multi-domain kinase Tor. Conclusions and Significance: We suggest that MAP4K3 has two independent functions during wing development, one related to the activation of the JNK pathway in response to stress and other in the assembling or activation of the TORC1 complex, being critical to modulate cellular responses to changes in nutrient availability

    Antibiotics Threaten Wildlife: Circulating Quinolone Residues and Disease in Avian Scavengers

    Get PDF
    Antibiotic residues that may be present in carcasses of medicated livestock could pass to and greatly reduce scavenger wildlife populations. We surveyed residues of the quinolones enrofloxacin and its metabolite ciprofloxacin and other antibiotics (amoxicillin and oxytetracycline) in nestling griffon Gyps fulvus, cinereous Aegypius monachus and Egyptian Neophron percnopterus vultures in central Spain. We found high concentrations of antibiotics in the plasma of many nestling cinereous (57%) and Egyptian (40%) vultures. Enrofloxacin and ciprofloxacin were also found in liver samples of all dead cinereous vultures. This is the first report of antibiotic residues in wildlife. We also provide evidence of a direct association between antibiotic residues, primarily quinolones, and severe disease due to bacterial and fungal pathogens. Our results indicate that, by damaging the liver and kidney and through the acquisition and proliferation of pathogens associated with the depletion of lymphoid organs, continuous exposure to antibiotics could increase mortality rates, at least in cinereous vultures. If antibiotics ingested with livestock carrion are clearly implicated in the decline of the vultures in central Spain then it should be considered a primary concern for conservation of their populations

    Neurodevelopmental toxicity of prenatal polychlorinated biphenyls (PCBs) by chemical structure and activity: a birth cohort study

    Get PDF
    Abstract Background Polychlorinated biphenyls (PCBs) are ubiquitous environmental toxins. Although there is growing evidence to support an association between PCBs and deficits of neurodevelopment, the specific mechanisms are not well understood. The potentially different roles of specific PCB groups defined by chemical structures or hormonal activities e.g., dioxin-like, non-dioxin like, or anti-estrogenic PCBs, remain unclear. Our objective was to examine the association between prenatal exposure to defined subsets of PCBs and neurodevelopment in a cohort of infants in eastern Slovakia enrolled at birth in 2002-2004. Methods Maternal and cord serum samples were collected at delivery, and analyzed for PCBs using high-resolution gas chromatography. The Bayley Scales of Infant Development -II (BSID) were administered at 16 months of age to over 750 children who also had prenatal PCB measurements. Results Based on final multivariate-adjusted linear regression model, maternal mono-ortho-substituted PCBs were significantly associated with lower scores on both the psychomotor (PDI) and mental development indices (MDI). Also a significant association between cord mono-ortho-substituted PCBs and reduced PDI was observed, but the association with MDI was marginal (p = 0.05). Anti-estrogenic and di-ortho-substituted PCBs did not show any statistically significant association with cognitive scores, but a suggestive association between di-ortho-substituted PCBs measured in cord serum and poorer PDI was observed. Conclusion Children with higher prenatal mono-ortho-substituted PCB exposures performed more poorly on the Bayley Scales. Evidence from this and other studies suggests that prenatal dioxin-like PCB exposure, including mono-ortho congeners, may interfere with brain development in utero. Non-dioxin-like di-ortho-substituted PCBs require further investigation

    Social Competitiveness and Plasticity of Neuroendocrine Function in Old Age: Influence of Neonatal Novelty Exposure and Maternal Care Reliability

    Get PDF
    Early experience is known to have a profound impact on brain and behavioral function later in life. Relatively few studies, however, have examined whether the effects of early experience remain detectable in the aging animal. Here, we examined the effects of neonatal novelty exposure, an early stimulation procedure, on late senescent rats' ability to win in social competition. During the first 3 weeks of life, half of each litter received daily 3-min exposures to a novel environment while the other half stayed in the home cage. At 24 months of age, pairs of rats competed against each other for exclusive access to chocolate rewards. We found that novelty-exposed rats won more rewards than home-staying rats, indicating that early experience exerts a life-long effect on this aspect of social dominance. Furthermore, novelty-exposed but not home-staying rats exhibited habituation of corticosterone release across repeated days of social competition testing, suggesting that early experience permanently enhances plasticity of the stress response system. Finally, we report a surprising finding that across individual rat families, greater effects of neonatal novelty exposure on stress response plasticity were found among families whose dams provided more reliable, instead of a greater total quantity of, maternal care

    Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles

    Get PDF
    <div><p>Recent development of benzoxaborole-based chemistry gave rise to a collection of compounds with great potential in targeting diverse infectious diseases, including human African Trypanosomiasis (HAT), a devastating neglected tropical disease. However, further medicinal development is largely restricted by a lack of insight into mechanism of action (MoA) in pathogenic kinetoplastids. We adopted a multidisciplinary approach, combining a high-throughput forward genetic screen with functional group focused chemical biological, structural biology and biochemical analyses, to tackle the complex MoAs of benzoxaboroles in <i>Trypanosoma brucei</i>. We describe an oxidative enzymatic pathway composed of host semicarbazide-sensitive amine oxidase and a trypanosomal aldehyde dehydrogenase TbALDH3. Two sequential reactions through this pathway serve as the key underlying mechanism for activating a series of 4-aminomethylphenoxy-benzoxaboroles as potent trypanocides; the methylamine parental compounds as pro-drugs are transformed first into intermediate aldehyde metabolites, and further into the carboxylate metabolites as effective forms. Moreover, comparative biochemical and crystallographic analyses elucidated the catalytic specificity of TbALDH3 towards the benzaldehyde benzoxaborole metabolites as xenogeneic substrates. Overall, this work proposes a novel drug activation mechanism dependent on both host and parasite metabolism of primary amine containing molecules, which contributes a new perspective to our understanding of the benzoxaborole MoA, and could be further exploited to improve the therapeutic index of antimicrobial compounds.</p></div
    corecore