318 research outputs found
Acceleration of the universe, vacuum metamorphosis, and the large-time asymptotic form of the heat kernel
We investigate the possibility that the late acceleration observed in the
rate of expansion of the universe is due to vacuum quantum effects arising in
curved spacetime. The theoretical basis of the vacuum cold dark matter (VCDM),
or vacuum metamorphosis, cosmological model of Parker and Raval is revisited
and improved. We show, by means of a manifestly nonperturbative approach, how
the infrared behavior of the propagator (related to the large-time asymptotic
form of the heat kernel) of a free scalar field in curved spacetime causes the
vacuum expectation value of its energy-momentum tensor to exhibit a resonance
effect when the scalar curvature R of the spacetime reaches a particular value
related to the mass of the field. we show that the back reaction caused by this
resonance drives the universe through a transition to an accelerating expansion
phase, very much in the same way as originally proposed by Parker and Raval.
Our analysis includes higher derivatives that were neglected in the earlier
analysis, and takes into account the possible runaway solutions that can follow
from these higher-derivative terms. We find that the runaway solutions do not
occur if the universe was described by the usual classical FRW solution prior
to the growth of vacuum energy-density and negative pressure (i.e., vacuum
metamorphosis) that causes the transition to an accelerating expansion of the
universe in this theory.Comment: 33 pages, 3 figures. Submitted to Physical Review D15 (Dec 23, 2003).
v2: 1 reference added. No other change
Density pertubation of unparticle dark matter in the flat Universe
The unparticle has been suggested as a candidate of dark matter. We
investigated the growth rate of the density perturbation for the unparticle
dark matter in the flat Universe. First, we consider the model in which
unparticle is the sole dark matter and find that the growth factor can be
approximated well by , where is
the equation of state of unparticle. Our results show that the presence of
modifies the behavior of the growth factor . For the second model
where unparticle co-exists with cold dark matter, the growth factor has a new
approximation and
is a function of . Thus the growth factor of unparticle is quite
different from that of usual dark matter. These information can help us know
more about unparticle and the early evolution of the Universe.Comment: 6pages, 4 figures, accepted for publication in Eur. Phys. J.
Local Constraints on the Oscillating G Model
We analyze the observational constraints on the effective Brans-Dicke
parameter and on the temporal variation of the effective gravitational constant
within the context of the oscillating G model, a cosmological model based on a
massive scalar field non-minimally coupled to gravity. We show that these local
constraints cannot be satisfied simultaneously once the values of the free
parameters entering the model become fixed by the global attributes of our
Universe. In particular, we show that the lower observational bound for the
effective Brans-Dicke parameter and the upper bound of the variation of the
effective gravitational constant lead to a specific value of the oscillation
amplitude which lies well below the value required to explain the periodicity
of 128 Mpc h^{-1} in the galaxy distribution observed in the pencil beam
surveys.Comment: PRD, subm., 12 pages, 1 figur
Bianchi solutions of quadratic gravity
It is believed that soon after the Planck time, Einstein's general relativity
theory should be corrected to an effective quadratic theory. Numerical
solutions for the anisotropic generalization of the Friedmann "open" model for this effective gravity are given. It must be emphasized that although
numeric, these solutions are exact in the sense that they depend only on the
precision of the machine. The solutions are identified asymptotically in a
certain way. It is found solutions which asymptote de Sitter space, Riemann
flat space and a singularity. The question of isotropisation of an initially
anisotropic Universe is of great importance in the context of cosmology.
Although isotropisation is not directly discussed in this present work, we show
that sufficiently small anisotropies, do not increase indefinitely according to
particular quadratic gravity theories. It can be understood as weak
isotropisation, and we stress that this result is strongly dependent on initial
conditions.Comment: version accepted for publication in General Relativity and
Gravitation. arXiv admin note: substantial text overlap with arXiv:1203.688
Fitting the integrated Spectral Energy Distributions of Galaxies
Fitting the spectral energy distributions (SEDs) of galaxies is an almost
universally used technique that has matured significantly in the last decade.
Model predictions and fitting procedures have improved significantly over this
time, attempting to keep up with the vastly increased volume and quality of
available data. We review here the field of SED fitting, describing the
modelling of ultraviolet to infrared galaxy SEDs, the creation of
multiwavelength data sets, and the methods used to fit model SEDs to observed
galaxy data sets. We touch upon the achievements and challenges in the major
ingredients of SED fitting, with a special emphasis on describing the interplay
between the quality of the available data, the quality of the available models,
and the best fitting technique to use in order to obtain a realistic
measurement as well as realistic uncertainties. We conclude that SED fitting
can be used effectively to derive a range of physical properties of galaxies,
such as redshift, stellar masses, star formation rates, dust masses, and
metallicities, with care taken not to over-interpret the available data. Yet
there still exist many issues such as estimating the age of the oldest stars in
a galaxy, finer details ofdust properties and dust-star geometry, and the
influences of poorly understood, luminous stellar types and phases. The
challenge for the coming years will be to improve both the models and the
observational data sets to resolve these uncertainties. The present review will
be made available on an interactive, moderated web page (sedfitting.org), where
the community can access and change the text. The intention is to expand the
text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics &
Space Scienc
Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum
We report a first measurement for ultra-high energy cosmic rays of the
correlation between the depth of shower maximum and the signal in the water
Cherenkov stations of air-showers registered simultaneously by the fluorescence
and the surface detectors of the Pierre Auger Observatory. Such a correlation
measurement is a unique feature of a hybrid air-shower observatory with
sensitivity to both the electromagnetic and muonic components. It allows an
accurate determination of the spread of primary masses in the cosmic-ray flux.
Up till now, constraints on the spread of primary masses have been dominated by
systematic uncertainties. The present correlation measurement is not affected
by systematics in the measurement of the depth of shower maximum or the signal
in the water Cherenkov stations. The analysis relies on general characteristics
of air showers and is thus robust also with respect to uncertainties in
hadronic event generators. The observed correlation in the energy range around
the `ankle' at differs significantly from
expectations for pure primary cosmic-ray compositions. A light composition made
up of proton and helium only is equally inconsistent with observations. The
data are explained well by a mixed composition including nuclei with mass . Scenarios such as the proton dip model, with almost pure compositions, are
thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray
flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets
This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics
Phenotypic Dissection of Bone Mineral Density Reveals Skeletal Site Specificity and Facilitates the Identification of Novel Loci in the Genetic Regulation of Bone Mass Attainment
Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ~4,890 participants recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular sites (re = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (re = 0.20-0.24). To explore the basis fo
- …