15,909 research outputs found

    W-exchange and W-annihilation processes of B mesons

    Full text link
    Using the PQCD method we calculate the W-exchange and the W-annihilation processes of B mesons, which in general involve a charm quark or anti-quark in the final state. The nonvanishing amplitudes of these processes are found to be suppressed by a factor of mc/mbm_c/m_b compared to the tree or the time-like penguin processes, but some of them are within the reach of observation at the future B-factories, and Bˉd0Ds+K\bar B_d^0 \to D^+_s K^- whose branching ratio is found to be 6.6×1066.6 \times 10^{-6} can be found even before the B-factory era. Comparisons with the results based on the BSW model are also given.Comment: 11 Pages including figures, accepted in Phys. Lett.

    The Power of Randomization: Distributed Submodular Maximization on Massive Datasets

    Full text link
    A wide variety of problems in machine learning, including exemplar clustering, document summarization, and sensor placement, can be cast as constrained submodular maximization problems. Unfortunately, the resulting submodular optimization problems are often too large to be solved on a single machine. We develop a simple distributed algorithm that is embarrassingly parallel and it achieves provable, constant factor, worst-case approximation guarantees. In our experiments, we demonstrate its efficiency in large problems with different kinds of constraints with objective values always close to what is achievable in the centralized setting

    A New Framework for Distributed Submodular Maximization

    Full text link
    A wide variety of problems in machine learning, including exemplar clustering, document summarization, and sensor placement, can be cast as constrained submodular maximization problems. A lot of recent effort has been devoted to developing distributed algorithms for these problems. However, these results suffer from high number of rounds, suboptimal approximation ratios, or both. We develop a framework for bringing existing algorithms in the sequential setting to the distributed setting, achieving near optimal approximation ratios for many settings in only a constant number of MapReduce rounds. Our techniques also give a fast sequential algorithm for non-monotone maximization subject to a matroid constraint

    Biogas production by co-ensiling catch crops and straw, effect of substrate blend and microbial communities

    Get PDF
    The combination of catch crop (CC) and barley straw(S) for biogas production was investigated in order to evaluate the ensiling process in batch assay and in continuous process. Based on two new agriculture strategies designed to produce energy and improve nutrient cycling in organic farming are being evaluated, one of them consisting on the harvest of straw and catch crop in different periods whereas the other strategy consists on harvesting them at the same time. Catch crops is promoted to reduce nutrient leaching during rainy season and straw that is not used for animal feeding or bedding is generally left in the field. Mixtures of CC and S provides several advantages: 1) Provides adequate TS for silage, 2) Absorbs the silage effluent, 3) Produces high LAB activity, and 4) Provides an optimal C/N for anaerobic digestion (AD). The effect of feeding compositions (straw or manurea ddition) on the microbial community structures were also investigated

    Pleistocene uplift and palaeoenvironments of Macquarie Island: evidence from palaeobeaches and sedimentary deposits

    Get PDF
    Macquarie Island (54°30'S, 159°00'E) is an emergent part of the Macquarie Ridge Complex composed of ocean-floor rocks of Miocene age now 4000 m above the ocean floor. A number of landforms, including palaeobeaches now above sea level (a.s.l.)on Macquarie Island, were formed by marine erosion during uplift of the island. During the last Pleistocene period of low sea level (c. 20 ka) the island was three times larger than now. Thermoluminescence (TL) dating of two palaeobeaches indicates Pleistocene ages: 172 ± 40 ka for one at 100 m a.s.l. and 340 ± 80 ka for another at 263 m a.s.l. Matching the altitude sequence of palaeobeaches on Macquarie Island with the pattern of peaks in world sea level determined from deep sea cores allows an independent estimate of beach ages. Comparison of the altitude and sea level sequences most plausibly places the 100 m palaeobeach in Oxygen Isotope Stage 5e (130-125 ka) and the 263 m palaeobeach in Stage 9 (340-330 ka), matching reasonably with the TL dates. Other palaeobeaches at about 50 m and 170-190 m a.s.l. then correlate with high sea levels. We calculate an average rate of uplift forthe island of 0.8 mma-I . At this rate, 4000 m of Macquarie Ridge uplift would have taken about five million years and the top of the island may first have emerged some 700 to 600 ka. During the six Pleistocene glacial-interglacial cycles since then, there has been periglacial rather than glacial activity on cold uplands, but conditions suitable for vegetation of the present type persisted close to sea level

    Glueball Interpretation of ξ\xi(2230)

    Full text link
    On the basis of the results of ξ(2230)π+π,ppˉ\xi(2230)\rightarrow\pi^{+}\pi^{-}, p\bar{p} and KKˉK\bar{K}, measured by the BES Collaboration in radiative J/ψ\psi decays, combined with the upper limit of Br(ξppˉ\xi\rightarrow p\bar{p})Br(ξKKˉ\xi\rightarrow K\bar{K}), measured by PS185 experiment, we argue that the distinctive properties of ξ\xi(2230), the flavor-symmetric decays and the narrow partial decay widths to ππ\pi\pi and KKˉK\bar{K} as well as its copious production in radiative J/ψ\psi decay, would strongly favor the glueball interpretation of ξ\xi(2230).Comment: Latex file, no figure

    Quantum-Dot-Based Telecommunication-Wavelength Quantum Relay

    Get PDF
    The development of quantum relays for long-haul and attack-proof quantum communication networks operating with weak coherent laser pulses requires entangled photon sources at telecommunication wavelengths with intrinsic single-photon emission for most practical implementations. Using a semiconductor quantum dot emitting entangled photon pairs in the telecommunication O band, we demonstrate a quantum relay fulfilling both of these conditions. The system achieves a maximum fidelity of 94.5% for implementation of a standard four-state protocol with input states generated by a laser. We further investigate robustness against frequency detuning of the narrow-band input and perform process tomography of the teleporter, revealing operation for arbitrary pure input states, with an average gate fidelity of 83.6%. The results highlight the potential of semiconductor light sources for compact and robust quantum-relay technology that is compatible with existing communication infrastructures

    Structure Preserving Parallel Algorithms for Solving the Bethe-Salpeter Eigenvalue Problem

    Full text link
    The Bethe-Salpeter eigenvalue problem is a dense structured eigenvalue problem arising from discretized Bethe-Salpeter equation in the context of computing exciton energies and states. A computational challenge is that at least half of the eigenvalues and the associated eigenvectors are desired in practice. We establish the equivalence between Bethe-Salpeter eigenvalue problems and real Hamiltonian eigenvalue problems. Based on theoretical analysis, structure preserving algorithms for a class of Bethe-Salpeter eigenvalue problems are proposed. We also show that for this class of problems all eigenvalues obtained from the Tamm-Dancoff approximation are overestimated. In order to solve large scale problems of practical interest, we discuss parallel implementations of our algorithms targeting distributed memory systems. Several numerical examples are presented to demonstrate the efficiency and accuracy of our algorithms
    corecore