15,909 research outputs found
W-exchange and W-annihilation processes of B mesons
Using the PQCD method we calculate the W-exchange and the W-annihilation
processes of B mesons, which in general involve a charm quark or anti-quark in
the final state. The nonvanishing amplitudes of these processes are found to be
suppressed by a factor of compared to the tree or the time-like
penguin processes, but some of them are within the reach of observation at the
future B-factories, and whose branching ratio is
found to be can be found even before the B-factory era.
Comparisons with the results based on the BSW model are also given.Comment: 11 Pages including figures, accepted in Phys. Lett.
The Power of Randomization: Distributed Submodular Maximization on Massive Datasets
A wide variety of problems in machine learning, including exemplar
clustering, document summarization, and sensor placement, can be cast as
constrained submodular maximization problems. Unfortunately, the resulting
submodular optimization problems are often too large to be solved on a single
machine. We develop a simple distributed algorithm that is embarrassingly
parallel and it achieves provable, constant factor, worst-case approximation
guarantees. In our experiments, we demonstrate its efficiency in large problems
with different kinds of constraints with objective values always close to what
is achievable in the centralized setting
A New Framework for Distributed Submodular Maximization
A wide variety of problems in machine learning, including exemplar
clustering, document summarization, and sensor placement, can be cast as
constrained submodular maximization problems. A lot of recent effort has been
devoted to developing distributed algorithms for these problems. However, these
results suffer from high number of rounds, suboptimal approximation ratios, or
both. We develop a framework for bringing existing algorithms in the sequential
setting to the distributed setting, achieving near optimal approximation ratios
for many settings in only a constant number of MapReduce rounds. Our techniques
also give a fast sequential algorithm for non-monotone maximization subject to
a matroid constraint
Biogas production by co-ensiling catch crops and straw, effect of substrate blend and microbial communities
The combination of catch crop (CC) and barley straw(S) for biogas production was investigated in order to evaluate the ensiling process in batch assay and in continuous process. Based on two new agriculture strategies designed to produce energy and improve nutrient cycling in organic farming are being evaluated, one of them consisting on the harvest of straw and catch crop in different periods whereas the other strategy consists on harvesting them at the same time. Catch crops is promoted to reduce nutrient leaching during rainy season and straw that is not used for animal feeding or bedding is generally left in the field. Mixtures of CC and S provides several advantages: 1) Provides adequate TS for silage, 2) Absorbs the silage effluent, 3) Produces high LAB activity, and 4) Provides an optimal C/N for anaerobic digestion (AD). The effect of feeding compositions (straw or manurea ddition) on the microbial community structures were also investigated
Pleistocene uplift and palaeoenvironments of Macquarie Island: evidence from palaeobeaches and sedimentary deposits
Macquarie Island (54°30'S, 159°00'E) is an emergent part of the Macquarie Ridge Complex composed of ocean-floor rocks of Miocene age now 4000 m above the ocean floor. A number of landforms, including palaeobeaches now above sea level (a.s.l.)on Macquarie Island, were formed by marine erosion during uplift of the island. During the last Pleistocene period of low sea level (c. 20 ka) the island was three times larger than now. Thermoluminescence (TL) dating of two palaeobeaches indicates Pleistocene ages: 172 ± 40 ka for one at 100 m a.s.l. and 340 ± 80 ka for another at 263 m a.s.l. Matching the altitude sequence of palaeobeaches on Macquarie Island with the pattern of peaks in world sea level determined from deep sea cores allows an independent estimate of beach ages. Comparison of the altitude and sea level sequences most plausibly places the 100 m palaeobeach in Oxygen Isotope Stage 5e (130-125 ka) and the 263 m palaeobeach
in Stage 9 (340-330 ka), matching reasonably with the TL dates. Other palaeobeaches at about 50 m and 170-190 m a.s.l. then correlate with high sea levels. We calculate an average rate of uplift forthe island of 0.8 mma-I . At this rate, 4000 m of Macquarie Ridge uplift would have taken about five million years and the top of the island may first have emerged some 700 to 600 ka. During the six Pleistocene glacial-interglacial cycles since then, there has been periglacial rather than glacial activity on cold uplands, but conditions suitable for vegetation of the present type persisted close to sea level
Glueball Interpretation of (2230)
On the basis of the results of
and , measured by the BES Collaboration in radiative J/ decays,
combined with the upper limit of Br()Br(), measured by PS185 experiment, we argue
that the distinctive properties of (2230), the flavor-symmetric decays and
the narrow partial decay widths to and as well as its
copious production in radiative J/ decay, would strongly favor the
glueball interpretation of (2230).Comment: Latex file, no figure
Recommended from our members
An ASKAP Search for a Radio Counterpart to the First High-significance Neutron Star-Black Hole Merger LIGO/Virgo S190814bv
We present results from a search for a radio transient associated with the LIGO/Virgo source S190814bv, a likely neutron star-black hole (NSBH) merger, with the Australian Square Kilometre Array Pathfinder. We imaged a 30 deg2 field at ΔT = 2, 9, and 33 days post-merger at a frequency of 944 MHz, comparing them to reference images from the Rapid ASKAP Continuum Survey observed 110 days prior to the event. Each epoch of our observations covers 89% of the LIGO/Virgo localization region. We conducted an untargeted search for radio transients in this field, resulting in 21 candidates. For one of these, AT2019osy, we performed multiwavelength follow-up and ultimately ruled out the association with S190814bv. All other candidates are likely unrelated variables, but we cannot conclusively rule them out. We discuss our results in the context of model predictions for radio emission from NSBH mergers and place constrains on the circum-merger density and inclination angle of the merger. This survey is simultaneously the first large-scale radio follow-up of an NSBH merger, and the most sensitive widefield radio transients search to-date
Quantum-Dot-Based Telecommunication-Wavelength Quantum Relay
The development of quantum relays for long-haul and attack-proof quantum communication networks operating with weak coherent laser pulses requires entangled photon sources at telecommunication wavelengths with intrinsic single-photon emission for most practical implementations. Using a semiconductor quantum dot emitting entangled photon pairs in the telecommunication O band, we demonstrate a quantum relay fulfilling both of these conditions. The system achieves a maximum fidelity of 94.5% for implementation of a standard four-state protocol with input states generated by a laser. We further investigate robustness against frequency detuning of the narrow-band input and perform process tomography of the teleporter, revealing operation for arbitrary pure input states, with an average gate fidelity of 83.6%. The results highlight the potential of semiconductor light sources for compact and robust quantum-relay technology that is compatible with existing communication infrastructures
Structure Preserving Parallel Algorithms for Solving the Bethe-Salpeter Eigenvalue Problem
The Bethe-Salpeter eigenvalue problem is a dense structured eigenvalue
problem arising from discretized Bethe-Salpeter equation in the context of
computing exciton energies and states. A computational challenge is that at
least half of the eigenvalues and the associated eigenvectors are desired in
practice. We establish the equivalence between Bethe-Salpeter eigenvalue
problems and real Hamiltonian eigenvalue problems. Based on theoretical
analysis, structure preserving algorithms for a class of Bethe-Salpeter
eigenvalue problems are proposed. We also show that for this class of problems
all eigenvalues obtained from the Tamm-Dancoff approximation are overestimated.
In order to solve large scale problems of practical interest, we discuss
parallel implementations of our algorithms targeting distributed memory
systems. Several numerical examples are presented to demonstrate the efficiency
and accuracy of our algorithms
- …
