193 research outputs found
Testing relationships: ethical arguments for screening with HbA1C
Since the 1990s, glycated haemoglobin (HbA1C) has been the gold standard for monitoring glycaemic control in people diagnosed as having either type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM). Discussions are underway about diagnosing diabetes mellitus on the basis of HbA1C titres and using HbA1C tests to screen for T2DM. These discussions have focused on the relative benefits for individual patients, with some attention directed towards reduced costs to healthcare systems and benefits to society. We argue that there are strong ethical reasons for adopting HbA1C-based diagnosis and T2DM screening that have not yet been articulated. The rationale includes the differential impact of HbA1C-based diabetic testing on disadvantaged groups, and what we are beginning to learn about HbA1C vis-à-vis population health. Although it is arguable that screening must primarily benefit the individual, using HbA1C to diagnose and screen for T2DM may promote a more just distribution of health resources and lead to advances in investigating, monitoring and tackling the social determinants of health
Gaze following in multiagent contexts: Evidence for a quorum-like principle
Research shows that humans spontaneously follow another individual’s gaze. However, little remains known on how they respond when multiple gaze cues diverge across members of a social group. To address this question, we presented participants with displays depicting three (Experiment 1) or five (Experiment 2) agents showing diverging social cues. In a three-person group, one individual looking at the target (33% of the group) was sufficient to elicit gaze-facilitated target responses. With a five-person group, however, three individuals looking at the target (60% of the group) were necessary to produce the same effect. Gaze following in small groups therefore appears to be based on a quorum-like principle, whereby the critical level of social information needed for gaze following is determined by a proportion of consistent social cues scaled as a function of group size. As group size grows, greater agreement is needed to evoke joint attention
Acute Muscular Sarcocystosis: An International Investigation Among Ill Travelers Returning From Tioman Island, Malaysia, 2011-2012
A large outbreak of acute muscular sarcocystosis (AMS) among international tourists who visited Tioman Island, Malaysia, is described. Clinicians evaluating travelers returning ill from Malaysia with myalgia, with or without fever, should consider AMS in their differential diagnosi
A Qualitative Exploration of Factors Affecting Group Cohesion and Team Play in Multiplayer Online Battle Arenas (MOBAs)
Previous research examining the social psychology of video-gaming has tended to focus on Massively Multiplayer Online Role Playing Game (MMORPG) environments, such as World of Warcraft. Although many online group processes have been examined using this game, this genre does not enforce cooperative play and studies tend to be based on very large groups. Newer genres are being developed and played which have so far not been studied. The genre known as Multiplayer Online Battle Arenas (MOBAs) are attracting large numbers of players and success depends on effective team playing within smaller groups. The study reported here explores team play within MOBAs. Due to the lack of literature examining this genre, Corbin and Strauss’ (2008) Grounded Theory was used to analyse participants’ subjective experiences of playing MOBAs to create a conceptual model. A focus group pilot study informed the development of questions and then semi-structured interviews took place with twelve participants; 1 female and 11 male students aged between 18-21 years. Participants were required to have recent and frequent MOBA exposure, but with different preferences regarding roles and experience. Data was analysed using open, axial and selective coding and the resulting model depicts a scale, as optimal team performance was linked to a balance between factors. The core category “Communication” was heavily influenced by the relationship between teammates (friends or strangers). The balance of “Communication” affected the balance of the final three categories: “Team Composition”, “Psychological State” and “Level of Play”. The conceptual model is critically linked with traditional group processes, such as Belbin’s (1993) team roles, Tuckman’s (1965) model of group development and the perceptions and behaviour during the state of deindividuation (Taylor & MacDonald, 2002). The model has real-world application in both social and professional virtual environments, whilst contributing more broadly to research in Cyberpsychology and Social Psychology. Further research is suggested which will test predictions based on a predictive model
SWI/SNF and Asf1 Independently Promote Derepression of the DNA Damage Response Genes under Conditions of Replication Stress
The histone chaperone Asf1 and the chromatin remodeler SWI/SNF have been separately implicated in derepression of the DNA damage response (DDR) genes in yeast cells treated with genotoxins that cause replication interference. Using genetic and biochemical approaches, we have tested if derepression of the DDR genes in budding yeast involves functional interplay between Asf1 and SWI/SNF. We find that Asf1 and SWI/SNF are both recruited to DDR genes under replication stress triggered by hydroxyurea, and have detected a soluble complex that contains Asf1 and the Snf2 subunit of SWI/SNF. SWI/SNF recruitment to DDR genes however does not require Asf1, and deletion of Snf2 does not affect Asf1 occupancy of DDR gene promoters. A checkpoint engagement defect is sufficient to explain the synthetic effect of deletion of ASF1 and SNF2 on derepression of the DDR genes in hydroxyurea-treated cells. Collectively, our results show that the DDR genes fall into a class in which Asf1 and SWI/SNF independently control transcriptional induction
Noninvasive Prenatal Diagnosis of Fetal Trisomy 18 and Trisomy 13 by Maternal Plasma DNA Sequencing
Massively parallel sequencing of DNA molecules in the plasma of pregnant women has been shown to allow accurate and noninvasive prenatal detection of fetal trisomy 21. However, whether the sequencing approach is as accurate for the noninvasive prenatal diagnosis of trisomy 13 and 18 is unclear due to the lack of data from a large sample set. We studied 392 pregnancies, among which 25 involved a trisomy 13 fetus and 37 involved a trisomy 18 fetus, by massively parallel sequencing. By using our previously reported standard z-score approach, we demonstrated that this approach could identify 36.0% and 73.0% of trisomy 13 and 18 at specificities of 92.4% and 97.2%, respectively. We aimed to improve the detection of trisomy 13 and 18 by using a non-repeat-masked reference human genome instead of a repeat-masked one to increase the number of aligned sequence reads for each sample. We then applied a bioinformatics approach to correct GC content bias in the sequencing data. With these measures, we detected all (25 out of 25) trisomy 13 fetuses at a specificity of 98.9% (261 out of 264 non-trisomy 13 cases), and 91.9% (34 out of 37) of the trisomy 18 fetuses at 98.0% specificity (247 out of 252 non-trisomy 18 cases). These data indicate that with appropriate bioinformatics analysis, noninvasive prenatal diagnosis of trisomy 13 and trisomy 18 by maternal plasma DNA sequencing is achievable
Cdc7p-Dbf4p Regulates Mitotic Exit by Inhibiting Polo Kinase
Cdc7p-Dbf4p is a conserved protein kinase required for the initiation of DNA replication. The Dbf4p regulatory subunit binds Cdc7p and is essential for Cdc7p kinase activation, however, the N-terminal third of Dbf4p is dispensable for its essential replication activities. Here, we define a short N-terminal Dbf4p region that targets Cdc7p-Dbf4p kinase to Cdc5p, the single Polo kinase in budding yeast that regulates mitotic progression and cytokinesis. Dbf4p mediates an interaction with the Polo substrate-binding domain to inhibit its essential role during mitosis. Although Dbf4p does not inhibit Polo kinase activity, it nonetheless inhibits Polo-mediated activation of the mitotic exit network (MEN), presumably by altering Polo substrate targeting. In addition, although dbf4 mutants defective for interaction with Polo transit S-phase normally, they aberrantly segregate chromosomes following nuclear misorientation. Therefore, Cdc7p-Dbf4p prevents inappropriate exit from mitosis by inhibiting Polo kinase and functions in the spindle position checkpoint
Single origin of sex chromosomes and multiple origins of B chromosomes in fish genus Characidium
Chromosome painting with DNA probes obtained from supernumerary (B) and sex chromosomes in three species of fish genus Characidium (C. gomesi, C. pterostictum and C. oiticicai) showed a close resemblance in repetitive DNA content between B and sex chromosomes in C. gomesi and C. pterostictum. This suggests an intraspecific origin for B chromosomes in these two species, probably deriving from sex chromosomes. In C. oiticicai, however, a DNA probe obtained from its B chromosome hybridized with the B but not with the A chromosomes, suggesting that the B chromosome in this species could have arisen interspecifically, although this hypothesis needs further investigation. A molecular phylogenetic analysis performed on nine Characidium species, with two mtDNA genes, showed that the presence of heteromorphic sex chromosomes in these species is a derived condition, and that their origin could have been unique, a conclusion also supported by interspecific chromosome painting with a CgW probe derived from the W chromosome in C. gomesi. Summing up, our results indicate that whereas heteromorphic sex chromosomes in the genus Characidium appear to have had a common and unique origin, B chromosomes may have had independent origins in different species. Our results also show that molecular phylogenetic analysis is an excellent complement for cytogenetic studies by unveiling the direction of evolutionary chromosome changes.This research was funded by grants from the State of Sao Paulo Research Foundation (FAPESP) to EAS (2013/02143-3), grants from National Council for Research and Development (CNPq) to FF (480449/2012-0), and by Coordenacao de Aperfeicoamento de Pessoal de Nıvel Superior (CAPES)
High-Content, High-Throughput Analysis of Cell Cycle Perturbations Induced by the HSP90 Inhibitor XL888
BACKGROUND: Many proteins that are dysregulated or mutated in cancer cells rely on the molecular chaperone HSP90 for their proper folding and activity, which has led to considerable interest in HSP90 as a cancer drug target. The diverse array of HSP90 client proteins encompasses oncogenic drivers, cell cycle components, and a variety of regulatory factors, so inhibition of HSP90 perturbs multiple cellular processes, including mitogenic signaling and cell cycle control. Although many reports have investigated HSP90 inhibition in the context of the cell cycle, no large-scale studies have examined potential correlations between cell genotype and the cell cycle phenotypes of HSP90 inhibition. METHODOLOGY/PRINCIPAL FINDINGS: To address this question, we developed a novel high-content, high-throughput cell cycle assay and profiled the effects of two distinct small molecule HSP90 inhibitors (XL888 and 17-AAG [17-allylamino-17-demethoxygeldanamycin]) in a large, genetically diverse panel of cancer cell lines. The cell cycle phenotypes of both inhibitors were strikingly similar and fell into three classes: accumulation in M-phase, G2-phase, or G1-phase. Accumulation in M-phase was the most prominent phenotype and notably, was also correlated with TP53 mutant status. We additionally observed unexpected complexity in the response of the cell cycle-associated client PLK1 to HSP90 inhibition, and we suggest that inhibitor-induced PLK1 depletion may contribute to the striking metaphase arrest phenotype seen in many of the M-arrested cell lines. CONCLUSIONS/SIGNIFICANCE: Our analysis of the cell cycle phenotypes induced by HSP90 inhibition in 25 cancer cell lines revealed that the phenotypic response was highly dependent on cellular genotype as well as on the concentration of HSP90 inhibitor and the time of treatment. M-phase arrest correlated with the presence of TP53 mutations, while G2 or G1 arrest was more commonly seen in cells bearing wt TP53. We draw upon previous literature to suggest an integrated model that accounts for these varying observations
- …