903 research outputs found

    A novel and precise time domain description of MOSFET low frequency noise due to random telegraph signals

    Full text link
    Nowadays, random telegraph signals play an important role in integrated circuit performance variability, leading for instance to failures in memory circuits. This problem is related to the successive captures and emissions of electrons at the many traps stochastically distributed at the silicon-oxide (Si-SiO2) interface of MOS transistors. In this paper we propose a novel analytical and numerical approach to statistically describe the fluctuations of current due to random telegraph signal in time domain. Our results include two distinct situations: when the density of interface trap density is uniform in energy, and when it is an u-shape curve as prescribed in literature, here described as simple quadratic function. We establish formulas for relative error as function of the parameters related to capture and emission probabilities. For a complete analysis experimental u-shape curves are used and compared with the theoretical aproach

    The effect of polydispersity on the ordering transition of adsorbed self-assembled rigid rods

    Get PDF
    Extensive Monte Carlo simulations were carried out to investigate the nature of the ordering transition of a model of adsorbed self-assembled rigid rods on the bonds of a square lattice [Tavares et. al., Phys. Rev E 79, 021505 (2009)]. The polydisperse rods undergo a continuous ordering transition that is found to be in the two-dimensional Ising universality class, as in models where the rods are monodisperse. This finding is in sharp contrast with the recent claim that equilibrium polydispersity changes the nature of the phase transition in this class of models [L`opez et. al., Phys. Rev E 80, 040105(R)(2009)].Comment: 19 pages, 5 figure

    Intermolecular Interactions between Encapsulated Aromatic Compounds and the Host Framework of a Crystalline Sponge

    Get PDF
    The crystalline sponge [{(ZnI2)3(tris(4-pyridyl)-1,3,5-triazine)2·x(solvent)}n] has been used to produce a range of novel encapsulation compounds with acetophene, trans-cinnamaldehyde, naphthalene, anthracene, and benzylcyanide. Using additional data from previously reported encapsulation compounds, three systematic series have been created and analyzed to investigate the behavior of guest molecules within the sponge framework and identify the dominant intermolecular interactions

    The generator coordinate method in time-dependent density-functional theory: memory made simple

    Full text link
    The generator coordinate (GC) method is a variational approach to the quantum many-body problem in which interacting many-body wave functions are constructed as superpositions of (generally nonorthogonal) eigenstates of auxiliary Hamiltonians containing a deformation parameter. This paper presents a time-dependent extension of the GC method as a new approach to improve existing approximations of the exchange-correlation (XC) potential in time-dependent density-functional theory (TDDFT). The time-dependent GC method is shown to be a conceptually and computationally simple tool to build memory effects into any existing adiabatic XC potential. As an illustration, the method is applied to driven parametric oscillations of two interacting electrons in a harmonic potential (Hooke's atom). It is demonstrated that a proper choice of time-dependent generator coordinates in conjunction with the adiabatic local-density approximation reproduces the exact linear and nonlinear two-electron dynamics quite accurately, including features associated with double excitations that cannot be captured by TDDFT in the adiabatic approximation.Comment: 10 pages, 13 figure

    Quantifying Rapid Variability in Accreting Compact Objects

    Get PDF
    I discuss some practical aspects of the analysis of millisecond time variability X-ray data obtained from accreting neutron stars and black holes. First I give an account of the statistical methods that are at present commonly applied in this field. These are mostly based on Fourier techniques. To a large extent these methods work well: they give astronomers the answers they need. Then I discuss a number of statistical questions that astronomers don't really know how to solve properly and that statisticians may have ideas about. These questions have to do with the highest and the lowest frequency ranges accessible in the Fourier analysis: how do you determine the shortest time scale present in the variability, how do you measure steep low-frequency noise. The point is stressed that in order for any method that resolves these issues to become popular, it is necessary to retain the capabilities the current methods already have in quantifying the complex, concurrent variability processes characteristic of accreting neutron stars and black holes.Comment: To be published in the Proceedings of "Statistical Challenges in Modern Astronomy II", University Park PA, USA, June 199

    A Simple Non-Markovian Computational Model of the Statistics of Soccer Leagues: Emergence and Scaling effects

    Full text link
    We propose a novel algorithm that outputs the final standings of a soccer league, based on a simple dynamics that mimics a soccer tournament. In our model, a team is created with a defined potential(ability) which is updated during the tournament according to the results of previous games. The updated potential modifies a teams' future winning/losing probabilities. We show that this evolutionary game is able to reproduce the statistical properties of final standings of actual editions of the Brazilian tournament (Brasileir\~{a}o). However, other leagues such as the Italian and the Spanish tournaments have notoriously non-Gaussian traces and cannot be straightforwardly reproduced by this evolutionary non-Markovian model. A complete understanding of these phenomena deserves much more attention, but we suggest a simple explanation based on data collected in Brazil: Here several teams were crowned champion in previous editions corroborating that the champion typically emerges from random fluctuations that partly preserves the gaussian traces during the tournament. On the other hand, in the Italian and Spanish leagues only a few teams in recent history have won their league tournaments. These leagues are based on more robust and hierarchical structures established even before the beginning of the tournament. For the sake of completeness, we also elaborate a totally Gaussian model (which equalizes the winning, drawing, and losing probabilities) and we show that the scores of the "Brasileir\~{a}o" cannot be reproduced. Such aspects stress that evolutionary aspects are not superfluous in our modeling. Finally, we analyse the distortions of our model in situations where a large number of teams is considered, showing the existence of a transition from a single to a double peaked histogram of the final classification scores. An interesting scaling is presented for different sized tournaments.Comment: 18 pages, 9 figure

    An alternative order parameter for the 4-state Potts model

    Get PDF
    We have investigated the dynamic critical behavior of the two-dimensional 4-state Potts model using an alternative order parameter first used by Vanderzande [J. Phys. A: Math. Gen. \textbf{20}, L549 (1987)] in the study of the Z(5) model. We have estimated the global persistence exponent θg\theta_g by following the time evolution of the probability P(t)P(t) that the considered order parameter does not change its sign up to time tt. We have also obtained the critical exponents θ\theta, zz, ν\nu, and β\beta using this alternative definition of the order parameter and our results are in complete agreement with available values found in literature.Comment: 6 pages, 6 figure

    Variance fluctuations in nonstationary time series: a comparative study of music genres

    Full text link
    An important problem in physics concerns the analysis of audio time series generated by transduced acoustic phenomena. Here, we develop a new method to quantify the scaling properties of the local variance of nonstationary time series. We apply this technique to analyze audio signals obtained from selected genres of music. We find quantitative differences in the correlation properties of high art music, popular music, and dance music. We discuss the relevance of these objective findings in relation to the subjective experience of music.Comment: 13 pages, 4 fig

    Number counts in homogeneous and inhomogeneous dark energy models

    Full text link
    In the simple case of a constant equation of state, redshift distribution of collapsed structures may constrain dark energy models. Different dark energy models having the same energy density today but different equations of state give quite different number counts. Moreover, we show that introducing the possibility that dark energy collapses with dark matter (``inhomogeneous'' dark energy) significantly complicates the picture. We illustrate our results by comparing four dark energy models to the standard Λ\Lambda-model. We investigate a model with a constant equation of state equal to -0.8, a phantom energy model and two scalar potentials (built out of a combination of two exponential terms). Although their equations of state at present are almost indistinguishable from a Λ\Lambda-model, both scalar potentials undergo quite different evolutions at higher redshifts and give different number counts. We show that phantom dark energy induces opposite departures from the Λ\Lambda-model as compared with the other models considered here. Finally, we find that inhomogeneous dark energy enhances departures from the Λ\Lambda-model with maximum deviations of about 15% for both number counts and integrated number counts. Larger departures from the Λ\Lambda-model are obtained for massive structures which are rare objects making it difficult to statistically distinguish between models.Comment: 10 pages, 11 figures. Version accepted for publication in A&

    Parallel algorithm with spectral convergence for nonlinear integro-differential equations

    Get PDF
    We discuss a numerical algorithm for solving nonlinear integro-differential equations, and illustrate our findings for the particular case of Volterra type equations. The algorithm combines a perturbation approach meant to render a linearized version of the problem and a spectral method where unknown functions are expanded in terms of Chebyshev polynomials (El-gendi's method). This approach is shown to be suitable for the calculation of two-point Green functions required in next to leading order studies of time-dependent quantum field theory.Comment: 15 pages, 9 figure
    • …
    corecore