451 research outputs found

    High-Contrast Observations in Optical and Infrared Astronomy

    Full text link
    High-contrast observations in optical and infrared astronomy are defined as any observation requiring a technique to reveal a celestial object of interest that is in such close angular proximity to another source brighter by a factor of at least 10^5 that optical effects hinder or prevent the collection of photons directly from the target of observation. This is a relatively new type of observation that enables research on previously obscured parts of the Universe. In particular, it is most applicable to Comparative Planetary Science, a field that directly attacks such questions as "how common are planetary systems? What types of planets exist, and are there planets other than Earth that are capable of supporting life as we know it?" We survey the scientific motivations for high-contrast observations, provide an overview of the techniques currently being used or developed, and discuss some ideas and studies for future prospects.Comment: In press for Annual Review of Astronomy and Astrophysics (Vol. 47). 46 pages, 15 figure

    Instability of black hole formation under small pressure perturbations

    Get PDF
    We investigate here the spectrum of gravitational collapse endstates when arbitrarily small perfect fluid pressures are introduced in the classic black hole formation scenario as described by Oppenheimer, Snyder and Datt (OSD) [1]. This extends a previous result on tangential pressures [2] to the more physically realistic scenario of perfect fluid collapse. The existence of classes of pressure perturbations is shown explicitly, which has the property that injecting any smallest pressure changes the final fate of the dynamical collapse from a black hole to a naked singularity. It is therefore seen that any smallest neighborhood of the OSD model, in the space of initial data, contains collapse evolutions that go to a naked singularity outcome. This gives an intriguing insight on the nature of naked singularity formation in gravitational collapse.Comment: 7 pages, 1 figure, several modifications to match published version on GR

    Large scale outflows from z ~ 0.7 starburst galaxies identified via ultra-strong MgII quasar absorption lines

    Full text link
    (Abridged) Star formation-driven outflows are a critical phenomenon in theoretical treatments of galaxy evolution, despite the limited ability of observations to trace them across cosmological timescales. If the strongest MgII absorption-line systems detected in the spectra of background quasars arise in such outflows, "ultra-strong" MgII (USMgII) absorbers would identify significant numbers of galactic winds over a huge baseline in cosmic time, in a manner independent of the luminous properties of the galaxy. To this end, we present the first detailed imaging and spectroscopic study of the fields of two USMgII absorber systems culled from a statistical absorber catalog, with the goal of understanding the physical processes leading to the large velocity spreads that define such systems. Each field contains two bright emission-line galaxies at similar redshift (dv < 300 km/s) to that of the absorption. Lower-limits on their instantaneous star formation rates (SFR) from the observed OII and Hb line fluxes, and stellar masses from spectral template fitting indicate specific SFRs among the highest for their masses at z~0.7. Additionally, their 4000A break and Balmer absorption strengths imply they have undergone recent (~0.01 - 1 Gyr) starbursts. The concomitant presence of two rare phenomena - starbursts and USMgII absorbers - strongly implies a causal connection. We consider these data and USMgII absorbers in general in the context of various popular models, and conclude that galactic outflows are generally necessary to account for the velocity extent of the absorption. We favour starburst driven outflows over tidally-stripped gas from a major interaction which triggered the starburst as the energy source for the majority of systems. Finally, we discuss the implications of these results and speculate on the overall contribution of such systems to the global SFR density at z~0.7.Comment: 15 pages, 6 figure, accepted for publication by MNRA

    The effect of feedback on the emission properties of the Warm-Hot Intergalactic Medium

    Full text link
    At present, 30-40 per cent of the baryons in the local Universe is still undetected. According to theoretical predictions, this gas should reside in filaments filling the large-scale structure (LSS) in the form of a Warm-Hot Intergalactic Medium (WHIM), at temperatures of 10^5 - 10^7 K, thus emitting in the soft X-ray energies via free-free interaction and line emission from heavy elements. In this work we characterize the properties of the X-ray emission of the WHIM, and the LSS in general, focusing on the influence of different physical mechanisms, namely galactic winds (GWs), black-hole feedback and star-formation, and providing estimates of possible observational constraints. To this purpose we use a set of cosmological hydrodynamical simulations that include a self-consistent treatment of star-formation and chemical enrichment of the intergalactic medium, that allows us to follow the evolution of different metal species. We construct a set of simulated light-cones to make predictions of the emission in the 0.3-10 keV energy range. We obtain that GWs increase by a factor of 2 the emission of both galaxy clusters and WHIM. The amount of oxygen at average temperature and, consequently, the amount of expected bright Ovii and Oviii lines is increased by a factor of 3 due to GWs and by 20 per cent when assuming a top-heavy IMF. We compare our results with current observational constraints and find that the emission from faint groups and WHIM should account from half to all of the unresolved X-ray background in the 1-2 keV band.Comment: 15 pages, 8 figures, 4 tables. Accepted for publication in the MNRAS. Minor changes after referee repor

    Cosmological Black Holes as Seeds of Voids in Galaxy Distribution

    Full text link
    Deep surveys indicate a bubbly structure of cosmological large scale which should be the result of evolution of primordial density perturbations. Several models have been proposed to explain origin and dynamics of such features but, till now, no exhaustive and fully consistent theory has been found. We discuss a model where cosmological black holes, deriving from primordial perturbations, are the seeds for large-scale-structure voids. We give details of dynamics and accretion of the system voids-cosmological black holes from the epochs (z103)(z\simeq10^{3}) till now finding that void of 40h1Mpc40h^{-1}Mpc of diameter and under-density of -0.9 will fits the observations without conflicting with the homogeneity and isotropy of cosmic microwave background radiation.Comment: to appear in Astronomy & Astrophysic

    ESO Imaging Survey. The Stellar Catalogue in the Chandra Deep Field South

    Full text link
    (abridged) Stellar catalogues in five passbands (UBVRI) over an area of approximately 0.3 deg^2, comprising about 1200 objects, and in seven passbands (UBVRIJK) over approximately 0.1 deg^2, comprising about 400 objects, in the direction of the Chandra Deep Field South are presented. The 90% completeness level of the number counts is reached at approximately U = 23.8, B = 24.0, V = 23.5, R = 23.0, I = 21.0, J = 20.5, K = 19.0. A scheme is presented to select point sources from these catalogues, by combining the SExtractor parameter CLASS_STAR from all available passbands. Probable QSOs and unresolved galaxies are identified by using the previously developed \chi^2-technique (Hatziminaoglou et al 2002), that fits the overall spectral energy distributions to template spectra and determines the best fitting template. The observed number counts, colour-magnitude diagrams, colour-colour diagrams and colour distributions are presented and, to judge the quality of the data, compared to simulations based on the predictions of a Galactic Model convolved with the estimated completeness functions and the error model used to describe the photometric errors of the data. The resulting stellar catalogues and the objects identified as likely QSOs and unresolved galaxies with coordinates, observed magnitudes with errors and assigned spectral types by the χ2\chi^2-technique are presented and are publicly available.Comment: Paper as it will appear in print. Complete figures and tables can be obtained from: http://www.eso.org/science/eis/eis_pub/eis_pub.html. Astronomy & Astrophysics, accepted for publicatio

    Warm stellar matter with deconfinement: application to compact stars

    Full text link
    We investigate the properties of mixed stars formed by hadronic and quark matter in β\beta-equilibrium described by appropriate equations of state (EOS) in the framework of relativistic mean-field theory. We use the non- linear Walecka model for the hadron matter and the MIT Bag and the Nambu-Jona-Lasinio models for the quark matter. The phase transition to a deconfined quark phase is investigated. In particular, we study the dependence of the onset of a mixed phase and a pure quark phase on the hyperon couplings, quark model and properties of the hadronic model. We calculate the strangeness fraction with baryonic density for the different EOS. With the NJL model the strangeness content in the mixed phase decreases. The calculations were performed for T=0 and for finite temperatures in order to describe neutron and proto-neutron stars. The star properties are discussed. Both the Bag model and the NJL model predict a mixed phase in the interior of the star. Maximum allowed masses for proto-neutron stars are larger for the NJL model (1.9\sim 1.9 M_{\bigodot}) than for the Bag model (1.6\sim 1.6 M_{\bigodot}).Comment: RevTeX,14 figures, accepted to publication in Physical Review

    A Self-Consistent Model for Positronium Formation from Helium Atoms

    Full text link
    The differential and total cross sections for electron capture by positrons from helium atoms are calculated using a first-order distorted wave theory satisfying the Coulomb boundary conditions. In this formalism a parametric potential is used to describe the electron screening in a consistent and realistic manner. The present procedure is self consistent because (i) it satisfies the correct boundary conditions and post-prior symmetry, and (ii) the potential and the electron binding energies appearing in the transition amplitude are consistent with the wave functions describing the collision system. The results are compared with the other theories and with the available experimental measurements. At the considered range of collision energies, the results agree reasonably well with recent experiments and theories. [Note: This paper will be published on volume 42 of the Brazilian Journal of Physics

    Neutron Stars in Teleparallel Gravity

    Full text link
    In this paper we deal with neutron stars, which are described by a perfect fluid model, in the context of the teleparallel equivalent of general relativity. We use numerical simulations to find the relationship between the angular momentum of the field and the angular momentum of the source. Such a relation was established for each stable star reached by the numerical simulation once the code is fed with an equation of state, the central energy density and the ratio between polar and equatorial radii. We also find a regime where linear relation between gravitational angular momentum and moment of inertia (as well as angular velocity of the fluid) is valid. We give the spatial distribution of the gravitational energy and show that it has a linear dependence with the squared angular velocity of the source.Comment: 19 pages, 14 figures. arXiv admin note: text overlap with arXiv:1206.331
    corecore