4,594 research outputs found
Deriving star formation histories from photometry using energy balance spectral energy distribution modelling
Panchromatic spectral energy distribution (SED) fitting is a critical tool for determining the physical properties of distant galaxies, such as their stellar mass and star formation rate. One widely used method is the publicly available MAGPHYS code. We build on our previous analysis (Hayward & Smith 2015) by presenting some modifications which enable MAGPHYS to automatically estimate galaxy star formation histories (SFHs), including uncertainties, based on ultra-violet to far-infrared photometry. We use state-of-the art synthetic photometry derived by performing three-dimensional dust radiative transfer on hydrodynamic simulations of isolated disc and merging galaxies to test how well the modified MAGPHYS is able to recover SFHs under idealised conditions, where the true SFH is known. We find that while the SFH of the model with the best fit to the synthetic photometry is a poor representation of the true SFH (showing large variations with the line-of-sight to the galaxy and spurious bursts of star formation), median-likelihood SFHs generated by marginalising over the default MAGPHYS libraries produce robust estimates of the smoothly-varying isolated disk simulation SFHs. This preference for the median-likelihood SFH is quantitatively underlined by our estimates of (analogous to the goodness-of-fit estimator) and (the integrated absolute mass discrepancy between the model and true SFH) that strongly prefer the median-likelihood SFHs over those that best fit the UV-to-far-IR photometry. In contrast, we are unable to derive a good estimate of the SFH for the merger simulations (either best-fit or median-likelihood) despite being able to obtain a reasonable fit to the simulated photometry, likely because the analytic SFHs with bursts superposed in the standard MAGPHYS library are insufficiently general/realistic.Peer reviewe
Complement C3 variant and the risk of age-related macular degeneration
Background: Age-related macular degeneration is the most common cause of blindness in Western populations. Susceptibility is influenced by age and by genetic and environmental factors. Complement activation is implicated in the pathogenesis.Methods: We tested for an association between age-related macular degeneration and 13 single-nucleotide polymorphisms (SNPs) spanning the complement genes C3 and C5 in case subjects and control subjects from the southeastern region of England. All subjects were examined by an ophthalmologist and had independent grading of fundus photographs to confirm their disease status. To test for replication of the most significant findings, we genotyped a set of Scottish cases and controls.Results: The common functional polymorphism rs2230199 (Arg80Gly) in the C3 gene, corresponding to the electrophoretic variants C3S (slow) and C3F (fast), was strongly associated with age-related macular degeneration in both the English group (603 cases and 350 controls, P=5.9 x 10(sup -5)) and the Scottish group (244 cases and 351 controls, P=5.0 x 10(sup -5)). The odds ratio for age-related macular degeneration in C3 S/F heterozygotes as compared with S/S homozygotes was 1.7 (95% confidence interval [CI], 1.3 to 2.1); for F/F homozygotes, the odds ratio was 2.6 (95% CI, 1.6 to 4.1). The estimated population attributable risk for C3F was 22%.Conclusions: Complement C3 is important in the pathogenesis of age-related macular degeneration. This finding further underscores the influence of the complement pathway in the pathogenesis of this disease
Topological Charged Black Holes in High Dimensional Spacetimes and Their Formation from Gravitational Collapse of a Type II Fluid
Topological charged black holes coupled with a cosmological constant in
spacetimes are studied, where is an Einstein
space of the form . The global structure for
the four-dimensional spacetimes with is investigated systematically.
The most general solutions that represent a Type fluid in such a high
dimensional spacetime are found, and showed that topological charged black
holes can be formed from the gravitational collapse of such a fluid. When the
spacetime is (asymptotically) self-similar, the collapse always forms black
holes for , in contrast to the case , where it can form
either balck holes or naked singularities.Comment: 14 figures, to appear in Phys. Rev.
Critical Collapse of Cylindrically Symmetric Scalar Field in Four-Dimensional Einstein's Theory of Gravity
Four-dimensional cylindrically symmetric spacetimes with homothetic
self-similarity are studied in the context of Einstein's Theory of Gravity, and
a class of exact solutions to the Einstein-massless scalar field equations is
found. Their local and global properties are investigated and found that they
represent gravitational collapse of a massless scalar field. In some cases the
collapse forms black holes with cylindrical symmetry, while in the other cases
it does not. The linear perturbations of these solutions are also studied and
given in closed form. From the spectra of the unstable eigen-modes, it is found
that there exists one solution that has precisely one unstable mode, which may
represent a critical solution, sitting on a boundary that separates two
different basins of attraction in the phase space.Comment: Some typos are corrected. The final version to appear in Phys. Rev.
Local structure study of the orbital order/disorder transition in LaMnO3
We use a combination of neutron and X-ray total scattering measurements
together with pair distribution function (PDF) analysis to characterise the
variation in local structure across the orbital order--disorder transition in
LaMnO. Our experimental data are inconsistent with a conventional
order--disorder description of the transition, and reflect instead the
existence of a discontinuous change in local structure between ordered and
disordered states. Within the orbital-ordered regime, the neutron and X-ray
PDFs are best described by a local structure model with the same local orbital
arrangements as those observed in the average (long-range) crystal structure.
We show that a variety of meaningfully-different local orbital arrangement
models can give fits of comparable quality to the experimental PDFs collected
within the disordered regime; nevertheless, our data show a subtle but
consistent preference for the anisotropic Potts model proposed in \emph{Phys
Rev.\ B} {\bf 79}, 174106 (2009). The key implications of this model are
electronic and magnetic isotropy together with the loss of local inversion
symmetry at the Mn site. We conclude with a critical assessment of the
interpretation of PDF measurements when characterising local symmetry breaking
in functional materials.Comment: 14 pages, 8 figures, 3 table
Increased risk of A(H1N1)pdm09 influenza infection in UK pig industry workers compared to a general population cohort.
BACKGROUND: Pigs are mixing vessels for influenza viral reassortment but the extent of influenza transmission between swine and humans is not well understood. OBJECTIVES: To assess whether occupational exposure to pigs is a risk factor for human infection with human and swine-adapted influenza viruses. METHODS: UK pig industry workers were frequency-matched on age, region, sampling month, and gender with a community-based comparison group from the Flu Watch study. HI assays quantified antibodies for swine and human A(H1) and A(H3) influenza viruses (titresâ„40 considered seropositive and indicative of infection). Virus-specific associations between seropositivity and occupational pig exposure were examined using multivariable regression models adjusted for vaccination. Pigs on the same farms were also tested for seropositivity. RESULTS: 42% of pigs were seropositive to A(H1N1)pdm09. Pig industry workers showed evidence of increased odds of A(H1N1)pdm09 seropositivity compared to the comparison group, albeit with wide confidence intervals (CI), Adjusted Odds Ratio after accounting for possible cross reactivity with other swine A(H1) viruses (aOR) 25.3, 95% CI [1.4-536.3], p=0.028. CONCLUSION: The results indicate that A(H1N1)pdm09 virus was common in UK pigs during the pandemic and subsequent period of human A(H1N1)pdm09 circulation, and occupational exposure to pigs was a risk factor for human infection. Influenza immunization of pig industry workers may reduce transmission and the potential for virus reassortment. This article is protected by copyright. All rights reserved
Toward ChiralityâEncoded Domain Wall Logic
Nonvolatile logic networks based on spintronic and nanomagnetic technologies have the potential to create highâspeed, ultralow power computational architectures. This article explores the feasibility of âchiralityâencoded domain wall logic,â a nanomagnetic logic architecture where data are encoded by the chiral structures of mobile domain walls in networks of ferromagnetic nanowires and processed by the chiral structures' interactions with geometric features of the networks. Highâresolution magnetic imaging is used to test two critical functionalities: the inversion of domain wall chirality at tailored artificial defect sites (logical NOT gates) and the chiralityâselective output of domain walls from 2âinâ1âout nanowire junctions (common operation to AND/NAND/OR/NOR gates). The measurements demonstrate both operations can be performed to a good degree of fidelity even in the presence of complex magnetization dynamics that would normally be expected to destroy chiralityâencoded information. Together, these results represent a strong indication of the feasibility of devices where chiral magnetization textures are used to directly carry, rather than merely delineate, data
The ISM properties and gas kinematics of a redshift 3 massive dusty star-forming galaxy
We present CO (J = 1 â 0; 3 â 2; 5 â 4; 10 â 9) and 1.2 kpc resolution [C II] line observations of the dusty star-forming galaxy (SFG) HXMM05âcarried out with the Karl G. Jansky Very Large Array, the Combined Array for Research in Millimeter-wave Astronomy, the Plateau de Bure Interferometer, and the Atacama Large Millimeter/submillimeter Array, measuring an unambiguous redshift of z = 2.9850 ± 0.0009. We find that HXMM05 is a hyperluminous infrared galaxy (LIR = (4 ± 1) Ă 1013 Le) with a total molecular gas mass of (2.1 ± 0.7) Ă 1011(aCO/0.8) Me. The CO (J = 1 â 0) and [C II] emission are extended over âŒ9 kpc in diameter, and the CO line FWHM exceeds 1100 km sâ1 . The [C II] emission shows a monotonic velocity gradient consistent with a disk, with a maximum rotation velocity of vc = 616 ± 100 km sâ1 and a dynamical mass of (7.7 ± 3.1) Ă 1011 Me. We find a star formation rate of 2900- + 595 750 Me yrâ1 . HXMM05 is thus among the most intensely SFGs known at high redshift. Photodissociation region modeling suggests physical conditions similar to nearby SFGs, showing extended star formation, which is consistent with our finding that the gas emission and dust emission are cospatial. Its molecular gas excitation resembles the local major merger Arp 220. The broad CO and [C II] lines and a pair of compact dust nuclei suggest the presence of a late-stage major merger at the center of the extended disk, again reminiscent of Arp 220. The observed gas kinematics and conditions, together with the presence of a companion and the pair of nuclei, suggest that HXMM05 is experiencing multiple mergers as a part of the evolution
LOFAR/H-ATLAS: The low-frequency radio luminosity - star-formation rate relation
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.Radio emission is a key indicator of star-formation activity in galaxies, but the radio luminosity-star formation relation has to date been studied almost exclusively at frequencies of 1.4 GHz or above. At lower radio frequencies the effects of thermal radio emission are greatly reduced, and so we would expect the radio emission observed to be completely dominated by synchrotron radiation from supernova-generated cosmic rays. As part of the LOFAR Surveys Key Science project, the Herschel-ATLAS NGP field has been surveyed with LOFAR at an effective frequency of 150 MHz. We select a sample from the MPA-JHU catalogue of SDSS galaxies in this area: the combination of Herschel, optical and mid-infrared data enable us to derive star-formation rates (SFRs) for our sources using spectral energy distribution fitting, allowing a detailed study of the low-frequency radio luminosity--star-formation relation in the nearby Universe. For those objects selected as star-forming galaxies (SFGs) using optical emission line diagnostics, we find a tight relationship between the 150 MHz radio luminosity () and SFR. Interestingly, we find that a single power-law relationship between and SFR is not a good description of all SFGs: a broken power law model provides a better fit. This may indicate an additional mechanism for the generation of radio-emitting cosmic rays. Also, at given SFR, the radio luminosity depends on the stellar mass of the galaxy. Objects which were not classified as SFGs have higher 150-MHz radio luminosity than would be expected given their SFR, implying an important role for low-level active galactic nucleus activity.Peer reviewedFinal Published versio
- âŠ