754 research outputs found
Internal relaxation time in immersed particulate materials
We study the dynamics of the solid to liquid transition for a model material
made of elastic particles immersed in a viscous fluid. The interaction between
particle surfaces includes their viscous lubrication, a sharp repulsion when
they get closer than a tuned steric length and their elastic deflection induced
by those two forces. We use Soft Dynamics to simulate the dynamics of this
material when it experiences a step increase in the shear stress and a constant
normal stress. We observe a long creep phase before a substantial flow
eventually establishes. We find that the typical creep time relies on an
internal relaxation process, namely the separation of two particles driven by
the applied stress and resisted by the viscous friction. This mechanism should
be relevant for granular pastes, living cells, emulsions and wet foams
Fully coupled simulations of non-colloidal monodisperse sheared suspensions
In this work we investigate numerically the dynamics of sheared suspensions in the limit of vanishingly small fluid and particle inertia. The numerical model we used is able to handle the multi-body hydrodynamic interactions between thousands of particles embedded in a linear shear flow. The presence of the particles is modeled by momentum source terms spread out on a spherical envelop forcing the Stokes equations of the creeping flow. Therefore all the velocity perturbations induced by the moving particles are simultaneously accounted for.
The statistical properties of the sheared suspensions are related to the velocity fluctuation of the particles. We formed averages for the resulting velocity fluctuation and rotation rate tensors. We found that the latter are highly anisotropic and that all the velocity fluctuation terms grow linearly with particle volume fraction. Only one off-diagonal term is found to be non zero (clearly related to trajectory symmetry breaking induced by the non-hydrodynamic repulsion force). We also found a strong correlation of positive/negative velocities in the shear plane, on a time scale controlled by the shear rate (direct interaction of two particles). The time scale required to restore uncorrelated velocity fluctuations decreases continuously as the concentration increases. We calculated the shear induced self-diffusion coefficients using two different methods and the resulting diffusion tensor appears to be anisotropic too.
The microstructure of the suspension is found to be drastically modified by particle interactions. First the probability density function of velocity fluctuations showed a transition from exponential to Gaussian behavior as particle concentration varies. Second the probability of finding close pairs while the particles move under shear flow is strongly enhanced by hydrodynamic interactions when the concentration increases
Forces on a boiling bubble in a developing boundary layer, in microgravity with g-jitter and in terrestrial conditions
Terrestrial and microgravity flow boiling experiments were carried out with the same test rig, comprising a locally heated artificial cavity in the center of a channel near the frontal edge of an intrusive glass bubble generator. Bubble shapes were in microgravity generally not far from those of truncated spheres,which permitted the computation of inertial lift and drag from potential flow theory for truncated spheres approximating the actual shape. For these bubbles, inertial lift is counteracted by drag and both forces are of the same order of magnitude as g-jitter. A generalization of the Laplace equation is found which applies to a deforming bubble attached to a plane wall and yields the pressure difference between the hydrostatic pressures in the bubble and at the wall, p. A fully independent way to determine the overpressure p is given by a second Euler-Lagrange equation. Relative differences have been found to be about 5% for both terrestrial and microgravity bubbles. A way is found to determine the sum of the two counteracting major force contributions on a bubble in the direction normal to the wall from a single directly measurable quantity. Good agreement with expectation values for terrestrial bubbles was obtained with the difference in radii of curvature averaged over the liquid-vapor interface, (1/R2 − 1/R1), multiplied with the surface tension coefficient, σ. The new analysis methods of force components presented also permit the accounting for a surface tension gradient along the liquid-vapor interface. No such gradients were found for the present measurements
Stability of the selfsimilar dynamics of a vortex filament
In this paper we continue our investigation about selfsimilar solutions of
the vortex filament equation, also known as the binormal flow (BF) or the
localized induction equation (LIE). Our main result is the stability of the
selfsimilar dynamics of small pertubations of a given selfsimilar solution. The
proof relies on finding precise asymptotics in space and time for the tangent
and the normal vectors of the perturbations. A main ingredient in the proof is
the control of the evolution of weighted norms for a cubic 1-D Schr\"odinger
equation, connected to the binormal flow by Hasimoto's transform.Comment: revised version, 36 page
Quasi-classical approximation in vortex filament dynamics. Integrable systems, gradient catastrophe and flutter
Quasiclassical approximation in the intrinsic description of the vortex
filament dynamics is discussed. Within this approximation the governing
equations are given by elliptic system of quasi-linear PDEs of the first order.
Dispersionless Da Rios system and dispersionless Hirota equation are among
them. They describe motion of vortex filament with slow varying curvature and
torsion without or with axial flow. Gradient catastrophe for governing
equations is studied. It is shown that geometrically this catastrophe manifests
as a fast oscillation of a filament curve around the rectifying plane which
resembles the flutter of airfoils. Analytically it is the elliptic umbilic
singularity in the terminology of the catastrophe theory. It is demonstrated
that its double scaling regularization is governed by the Painleve' I equation.Comment: 25 pages, 5 figures, minor typos correcte
Interaction Between Convection and Pulsation
This article reviews our current understanding of modelling convection
dynamics in stars. Several semi-analytical time-dependent convection models
have been proposed for pulsating one-dimensional stellar structures with
different formulations for how the convective turbulent velocity field couples
with the global stellar oscillations. In this review we put emphasis on two,
widely used, time-dependent convection formulations for estimating pulsation
properties in one-dimensional stellar models. Applications to pulsating stars
are presented with results for oscillation properties, such as the effects of
convection dynamics on the oscillation frequencies, or the stability of
pulsation modes, in classical pulsators and in stars supporting solar-type
oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages,
14 figure
Microglial activation and chronic neurodegeneration
Microglia, the resident innate immune cells in the brain, have long been implicated in the pathology of neurode-generative diseases. Accumulating evidence points to activated microglia as a chronic source of multiple neurotoxic factors, including tumor necrosis factor-α, nitric oxide, interleukin-1β, and reactive oxygen species (ROS), driving progressive neuron damage. Microglia can become chronically activated by either a single stimulus (e.g., lipopolysaccharide or neuron damage) or multiple stimuli exposures to result in cumulative neuronal loss with time. Although the mechanisms driving these phenomena are just beginning to be understood, reactive microgliosis (the microglial response to neuron damage) and ROS have been implicated as key mechanisms of chronic and neurotoxic microglial activation, particularly in the case of Parkinson’s disease. We review the mechanisms of neurotoxicity associated with chronic microglial activation and discuss the role of neuronal death and microglial ROS driving the chronic and toxic microglial phenotype
Experimental observation of Bethe strings
Almost a century ago, string states-complex bound states of magnetic excitations-were predicted to exist in one-dimensional quantum magnets(1). However, despite many theoretical studies(2-11), the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. In the field-induced quantum-critical regime, we identify strings and fractional magnetic excitations that are accurately described by the Bethe ansatz(1,3,4). Close to quantum criticality, the string excitations govern the quantum spin dynamics, whereas the fractional excitations, which are dominant at low energies, reflect the antiferromagnetic quantum fluctuations. Today, Bethe's result(1) is important not only in the field of quantum magnetism but also more broadly, including in the study of cold atoms and in string theory; hence, we anticipate that our work will shed light on the study of complex many-body systems in general
Using social media to support small group learning
Abstract Background Medical curricula are increasingly using small group learning and less didactic lecture-based teaching. This creates new challenges and opportunities in how students are best supported with information technology. We explored how university-supported and external social media could support collaborative small group working on our new undergraduate medical curriculum. Methods We made available a curation platform (Scoop.it) and a wiki within our virtual learning environment as part of year 1 Case-Based Learning, and did not discourage the use of other tools such as Facebook. We undertook student surveys to capture perceptions of the tools and information on how they were used, and employed software user metrics to explore the extent to which they were used during the year. Results Student groups developed a preferred way of working early in the course. Most groups used Facebook to facilitate communication within the group, and to host documents and notes. There were more barriers to using the wiki and curation platform, although some groups did make extensive use of them. Staff engagement was variable, with some tutors reviewing the content posted on the wiki and curation platform in face-to-face sessions, but not outside these times. A small number of staff posted resources and reviewed student posts on the curation platform. Conclusions Optimum use of these tools depends on sufficient training of both staff and students, and an opportunity to practice using them, with ongoing support. The platforms can all support collaborative learning, and may help develop digital literacy, critical appraisal skills, and awareness of wider health issues in society
Carbon isotope discrimination and yield of upland rice as affected by drought at flowering
- …
