152 research outputs found

    Functional conservation of the Drosophila hybrid incompatibility gene Lhr

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hybrid incompatibilities such as sterility and lethality are commonly modeled as being caused by interactions between two genes, each of which has diverged separately in one of the hybridizing lineages. The gene <it>Lethal hybrid rescue </it>(<it>Lhr</it>) encodes a rapidly evolving heterochromatin protein that causes lethality of hybrid males in crosses between <it>Drosophila melanogaster </it>females and <it>D. simulans </it>males. Previous genetic analyses showed that hybrid lethality is caused by <it>D. simulans Lhr </it>but not by <it>D. melanogaster Lhr</it>, confirming a critical prediction of asymmetry in the evolution of a hybrid incompatibility gene.</p> <p>Results</p> <p>Here we have examined the functional properties of <it>Lhr </it>orthologs from multiple Drosophila species, including interactions with other heterochromatin proteins, localization to heterochromatin, and ability to complement hybrid rescue in <it>D. melanogaster</it>/<it>D. simulans </it>hybrids. We find that these properties are conserved among most <it>Lhr </it>orthologs, including <it>Lhr </it>from <it>D. melanogaster</it>, <it>D. simulans </it>and the outgroup species <it>D. yakuba</it>.</p> <p>Conclusions</p> <p>We conclude that evolution of the hybrid lethality properties of <it>Lhr </it>between <it>D. melanogaster </it>and <it>D. simulans </it>did not involve extensive loss or gain of functions associated with protein interactions or localization to heterochromatin.</p

    Cis-by-Trans Regulatory Divergence Causes the Asymmetric Lethal Effects of an Ancestral Hybrid Incompatibility Gene

    Get PDF
    The Dobzhansky and Muller (D-M) model explains the evolution of hybrid incompatibility (HI) through the interaction between lineage-specific derived alleles at two or more loci. In agreement with the expectation that HI results from functional divergence, many protein-coding genes that contribute to incompatibilities between species show signatures of adaptive evolution, including Lhr, which encodes a heterochromatin protein whose amino acid sequence has diverged extensively between Drosophila melanogaster and D. simulans by natural selection. The lethality of D. melanogaster/D. simulans F1 hybrid sons is rescued by removing D. simulans Lhr, but not D. melanogaster Lhr, suggesting that the lethal effect results from adaptive evolution in the D. simulans lineage. It has been proposed that adaptive protein divergence in Lhr reflects antagonistic coevolution with species-specific heterochromatin sequences and that defects in LHR protein localization cause hybrid lethality. Here we present surprising results that are inconsistent with this coding-sequence-based model. Using Lhr transgenes expressed under native conditions, we find no evidence that LHR localization differs between D. melanogaster and D. simulans, nor do we find evidence that it mislocalizes in their interspecific hybrids. Rather, we demonstrate that Lhr orthologs are differentially expressed in the hybrid background, with the levels of D. simulans Lhr double that of D. melanogaster Lhr. We further show that this asymmetric expression is caused by cis-by-trans regulatory divergence of Lhr. Therefore, the non-equivalent hybrid lethal effects of Lhr orthologs can be explained by asymmetric expression of a molecular function that is shared by both orthologs and thus was presumably inherited from the ancestral allele of Lhr. We present a model whereby hybrid lethality occurs by the interaction between evolutionarily ancestral and derived alleles

    Impact of on-site cardiac catheterization on resource utilization and fatal and non-fatal outcomes after acute myocardial infarction

    Get PDF
    BACKGROUND: Patterns of care for acute myocardial infarction (AMI) strongly depend on the availability of on-site cardiac catheterization facilities. Although the management found at hospitals without on-site catheterization does not lead to increased mortality, little it known about its impact on resource utilization and non-fatal outcomes. METHODS: We identified all patients (n = 35,289) admitted with a first AMI in the province of Quebec between January 1, 1996 and March 31, 1999 using population-based administrative databases. Medical resource utilization and non-fatal and fatal outcomes were compared among patients admitted to hospitals with and without on-site cardiac catheterization facilities. RESULTS: Cardiac catheterization and PCI were more frequently performed among patients admitted to hospitals with catheterization facilities. However, non-invasive procedures were not used more frequently at hospitals without catheterization facilities. To the contrary, echocardiography [odds ratio (OR), 2.04; 95% confidence interval (CI), 1.93–2.16] and multi-gated acquisition imaging (OR, 1.24; 95% CI, 1.17–1.32) were used more frequently at hospitals with catheterization, and exercise treadmill testing (OR, 1.02; 95% CI, 0.91–1.15) and Sestamibi/Thallium imaging (OR, 0.93; 95% CI, 0.88–0.98) were used similarly at hospitals with and without catheterization. Use of anti-ischemic medications and frequency of emergency room and physician visits, were similar at both types of institutions. Readmission rates for AMI-related cardiac complications and mortality were also similar [adjusted hazard ratio, recurrent AMI: 1.02, 95% CI, 0.89–1.16; congestive heart failure: 1.02; 95% CI, 0.90–1.15; unstable angina: 0.93; 95% CI, 0.85–1.02; mortality: 0.99; 95% CI, 0.93–1.05)]. CONCLUSION: Although on-site availability of cardiac catheterization facilities is associated with greater use of invasive cardiac procedures, non-availability of catheterization did not translate into a higher use of non-invasive tests or have an impact on the fatal and non-fatal outcomes available for study in our administrative database

    Cholinergic Surveillance over Hippocampal RNA Metabolism and Alzheimer's-Like Pathology

    Get PDF
    The relationship between long-term cholinergic dysfunction and risk of developing dementia is poorly understood. Here we used mice with deletion of the vesicular acetylcholine transporter (VAChT) in the forebrain to model cholinergic abnormalities observed in dementia. Whole-genome RNA sequencing of hippocampal samples revealed that cholinergic failure causes changes in RNA metabolism. Remarkably, key transcripts related to Alzheimer's disease are affected. BACE1, for instance, shows abnormal splicing caused by decreased expression of the splicing regulator hnRNPA2/B1. Resulting BACE1 overexpression leads to increased APP processing and accumulation of soluble Aβ1-42. This is accompanied by age-related increases in GSK3 activation, tau hyperphosphorylation, caspase-3 activation, decreased synaptic markers, increased neuronal death, and deteriorating cognition. Pharmacological inhibition of GSK3 hyperactivation reversed deficits in synaptic markers and tau hyperphosphorylation induced by cholinergic dysfunction, indicating a key role for GSK3 in some of these pathological changes. Interestingly, in human brains there was a high correlation between decreased levels of VAChT and hnRNPA2/B1 levels with increased tau hyperphosphorylation. These results suggest that changes in RNA processing caused by cholinergic loss can facilitate Alzheimer's-like pathology in mice, providing a mechanism by which decreased cholinergic tone may increase risk of dementia

    Estimation of Isolation Times of the Island Species in the Drosophila simulans Complex from Multilocus DNA Sequence Data

    Get PDF
    Background: The Drosophila simulans species complex continues to serve as an important model system for the study of new species formation. The complex is comprised of the cosmopolitan species, D. simulans, and two island endemics, D. mauritiana and D. sechellia. A substantial amount of effort has gone into reconstructing the natural history of the complex, in part to infer the context in which functional divergence among the species has arisen. In this regard, a key parameter to be estimated is the initial isolation time (t) of each island species. Loci in regions of low recombination have lower divergence within the complex than do other loci, yet divergence from D. melanogaster is similar for both classes. This might reflect gene flow of the lowrecombination loci subsequent to initial isolation, but it might also reflect differential effects of changing population size on the two recombination classes of loci when the low-recombination loci are subject to genetic hitchhiking or pseudohitchhiking Methodology/Principal Findings: New DNA sequence variation data for 17 loci corroborate the prior observation from 13 loci that DNA sequence divergence is reduced in genes of low recombination. Two models are presented to estimate t and other relevant parameters (substitution rate correction factors in lineages leading to the island species and, in the case of the 4-parameter model, the ratio of ancestral to extant effective population size) from the multilocus DNA sequence data. Conclusions/Significance: In general, it appears that both island species were isolated at about the same time, here estimated at,250,000 years ago. It also appears that the difference in divergence patterns of genes in regions of low an

    Gene Expression Disruptions of Organism versus Organ in Drosophila Species Hybrids

    Get PDF
    Hybrid dysfunctions, such as sterility, may result in part from disruptions in the regulation of gene expression. Studies of hybrids within the Drosophila simulans clade have reported genes expressed above or below the expression observed in their parent species, and such misexpression is associated with male sterility in multigenerational backcross hybrids. However, these studies often examined whole bodies rather than testes or had limited replication using less-sensitive but global techniques. Here, we use a new RNA isolation technique to re-examine hybrid gene expression disruptions in both testes and whole bodies from single Drosophila males by real-time quantitative RT-PCR. We find two early-spermatogenesis transcripts are underexpressed in hybrid whole-bodies but not in assays of testes alone, while two late-spermatogenesis transcripts seem to be underexpressed in both whole-bodies and testes alone. Although the number of transcripts surveyed is limited, these results provide some support for a previous hypothesis that the spermatogenesis pathway in these sterile hybrids may be disrupted sometime after the expression of the early meiotic arrest genes

    Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy

    Get PDF
    Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field.Anwarul Hasan acknowledges the startup grant and the University Research Board (URB) grant from American University of Beirut, Lebanon, and the National Council for Scientific Research (CNRS) grant, Lebanon, as well as the Farouk Jabre interdisciplinary research award. Arghya Paul acknowledges the University of Kansas New Faculty General Research Fund for support and assistance with this work. The authors also acknowledge an investigator grant provided by the Institutional Development Award (IDeA) from the National Institute of General Medical Sciences (NIGMS) of the NIH Award Number P20GM103638-04 (to A.P.). R.W. acknowledges the financial support from NIGMS (NIH, T32-GM008359) Biotechnology Predoctoral Research Training Program

    Genetic Architecture of Hybrid Male Sterility in Drosophila: Analysis of Intraspecies Variation for Interspecies Isolation

    Get PDF
    Background: The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. Methodology/Principal Findings: Isofemale strains of D. mojavensis vary significantly in their production of sterile F 1 sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL) mapping analyses directly on F1 hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS) in the F1 is complex, involving multiple QTL, epistasis, and cytoplasmic effects. Conclusions/Significance: The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation

    Requirement of Male-Specific Dosage Compensation in Drosophila Females—Implications of Early X Chromosome Gene Expression

    Get PDF
    Dosage compensation equates between the sexes the gene dose of sex chromosomes that carry substantially different gene content. In Drosophila, the single male X chromosome is hypertranscribed by approximately two-fold to effect this correction. The key genes are male lethal and appear not to be required in females, or affect their viability. Here, we show these male lethals do in fact have a role in females, and they participate in the very process which will eventually shut down their function—female determination. We find the male dosage compensation complex is required for upregulating transcription of the sex determination master switch, Sex-lethal, an X-linked gene which is specifically activated in females in response to their two X chromosomes. The levels of some X-linked genes are also affected, and some of these genes are used in the process of counting the number of X chromosomes early in development. Our data suggest that before the female state is set, the ground state is male and female X chromosome expression is elevated. Females thus utilize the male dosage compensation process to amplify the signal which determines their fate
    corecore