826 research outputs found

    Fit with good fat? The role of n-3 polyunsaturated fatty acids on exercise performance

    Get PDF
    N-3 PUFA (n-3) polyunsaturated fatty acids (PUFA) are a family of fatty acids mainly found in oily fish and fish oil supplements. The effects of n-3 PUFA on health are mainly derived from its anti-inflammatory proprieties and its influence on immune function. Lately an increased interest in n-3 PUFA supplementation has reached the world of sport nutrition, where the majority of athletes rely on nutrition strategies to improve their training and performance. A vast amount of attention is paid in increasing metabolic capacity, delaying the onset of fatigue, and improving muscle hypertrophy and neuromuscular function. Nutritional strategies are also frequently considered for enhancing recovery, improving immune function and decreasing oxidative stress. The current review of the literature shows that data regarding the effects of n-3PUFA supplementation are conflicting and we conclude that there is, therefore, not enough evidence supporting a beneficial role on the aforementioned aspects of exercise performance

    Probabilistic analysis and comparison of stress-dependent rock physics models

    Get PDF
    A rock physics model attempts to account for the nonlinear stress dependence of seismic velocity by relating changes in stress and strain to changes in seismic velocity and anisotropy. Understanding and being able to model this relationship is crucial for any time-lapse geophysical or geohazard modelling scenario. In this study, we take a number of commonly used rock physics models and assess their behaviour and stability when applied to stress versus velocity measurements of a large (dry) core data set of different lithologies. We invert and calibrate each model and present a database of models for over 400 core samples. The results of which provide a useful tool for setting a priori parameter constraints for future model inversions. We observe that some models assume an increase in VP/VS ratio (hence Poisson’s ratio) with stress. A trait not seen for every sample in our data set. We demonstrate that most model parameters are well constrained. However, third-order elasticity models become ill-posed when their equations are simplified for an isotropic rock. We also find that third-order elasticity models are limited by their approximation of an exponential relationship via functions that lack an exponential term. We also argue that all models are difficult to parametrize without the availability of core data. Therefore, we derive simple relationships between model parameters, core porosity and clay content. We observe that these relationship are suitable for estimating seismic velocities of rock but poor when comes to predicting changes related to effective stress. The findings of this study emphasize the need for improvement to models if quantitatively accurate predictions of time-lapse velocity and anisotropy are to be made. Certain models appear to better fit velocity depth log data than velocity–stress core data. Thus, there is evidence to suggest a limitation in core data as a representation of the stress dependence of the subsurface. The differences in the stress dependence of the subsurface compared to that measured under laboratory conditions could potentially be significant. Although potentially difficult to investigate, its importance is of great significance if we wish to accurately interpret the stress dependence of subsurface seismic velocities

    Reservoir stress path and induced seismic anisotropy: Results from linking coupled fluid-flow/geomechanical simulation with seismic modelling

    Get PDF
    We present a workflow linking coupled fluid-flow and geomechanical simulation with seismic modelling to predict seismic anisotropy induced by nonhydrostatic stress changes. We generate seismic models from coupled simulations to examine the relationship between reservoir geometry, stress path and seismic anisotropy. The results indicate that geometry influences the evolution of stress, which leads to stress-induced seismic anisotropy. Although stress anisotropy is high for the small reservoir, the effect of stress arching and the ability of the side-burden to support the excess load limit the overall change in effective stress and hence seismic anisotropy. For the extensive reservoir, stress anisotropy and induced seismic anisotropy are high. The extensive and elongate reservoirs experience significant compaction, where the inefficiency of the developed stress arching in the side-burden cannot support the excess load. The elongate reservoir displays significant stress asymmetry, with seismic anisotropy developing predominantly along the long-edge of the reservoir. We show that the link between stress path parameters and seismic anisotropy is complex, where the anisotropic symmetry is controlled not only by model geometry but also the nonlinear rock physics model used. Nevertheless, a workflow has been developed to model seismic anisotropy induced by non-hydrostatic stress changes, allowing field observations of anisotropy to be linked with geomechanical models

    Complementary hydro-mechanical coupled finite/discrete element and microseismic modelling to predict hydraulic fracture propagation in tight shale reservoirs

    Get PDF
    This paper presents a novel approach to predict the propagation of hydraulic fractures in tight shale reservoirs. Many hydraulic fracture modelling schemes assume that the fracture direction is pre-seeded in the problem domain discretization. This is a severe limitation as the reservoir often contains large numbers of pre-existing fractures that strongly influence the direction of the propagating fracture. To circumvent these shortcomings a new fracture modelling treatment is proposed where the introduction of discrete fracture surfaces is based on new and dynamically updated geometrical entities rather than the topology of the underlying spatial discretization. Hydraulic fracturing is an inherently coupled engineering problem with interactions between fluid flow and fracturing when the stress state of the reservoir rock attains a failure criterion. This work follows a staggered hydro-mechanical coupled finite/discrete element approach to capture the key interplay between fluid pressure and fracture growth. In field practice the fracture growth is hidden from the design engineer and microseismicity is often used to infer hydraulic fracture lengths and directions. Microsesimic output can also be computed from changes of the effective stress in the geomechanical model and compared against field microseismicity. A number of hydraulic fracture numerical examples are presented to illustrate the new technology

    The host galaxies and explosion sites of long-duration gamma-ray bursts: Hubble Space Telescope near-infrared imaging

    Get PDF
    We present the results of a Hubble Space Telescope WFC3/F160WSnapshot survey of the host galaxies of 39 long-duration gamma-ray bursts (LGRBs) at z < 3. We have non-detections of hosts at the locations of four bursts. Sufficient accuracy to astrometrically align optical afterglowimages and determine the location of the LGRB within its hostwas possible for 31/35 detected hosts. In agreement with other work, we find the luminosity distribution of LGRB hosts is significantly fainter than that of a star formation rate-weighted field galaxy sample over the same redshift range, indicating LGRBs are not unbiasedly tracing the star formation rate. Morphologically, the sample of LGRB hosts is dominated by spiral-like or irregular galaxies. We find evidence for evolution of the population of LGRB hosts towards lower luminosity, higher concentrated hosts at lower redshifts. Their half-light radii are consistent with other LGRB host samples where measurements were made on rest-frame UV observations. In agreement with recent work, we find their 80 per cent enclosed flux radii distribution to be more extended than previously thought, making them intermediate between core-collapse supernova (CCSN) and superluminous supernova (SLSN) hosts. The galactocentric projectedoffset distribution confirms LGRBs as centrally concentrated, much more so than CCSNe and similar to SLSNe. LGRBs are strongly biased towards the brighter regions in their host light distributions, regardless of their offset. We find a correlation between the luminosity of the LGRB explosion site and the intrinsic column density, NH, towards the burst. © 2017 The Authors

    Architecture of the chromatin remodeler RSC and insights into its nucleosome engagement.

    Get PDF
    Eukaryotic DNA is packaged into nucleosome arrays, which are repositioned by chromatin remodeling complexes to control DNA accessibility. The Saccharomyces cerevisiae RSC (Remodeling the Structure of Chromatin) complex, a member of the SWI/SNF chromatin remodeler family, plays critical roles in genome maintenance, transcription, and DNA repair. Here, we report cryo-electron microscopy (cryo-EM) and crosslinking mass spectrometry (CLMS) studies of yeast RSC complex and show that RSC is composed of a rigid tripartite core and two flexible lobes. The core structure is scaffolded by an asymmetric Rsc8 dimer and built with the evolutionarily conserved subunits Sfh1, Rsc6, Rsc9 and Sth1. The flexible ATPase lobe, composed of helicase subunit Sth1, Arp7, Arp9 and Rtt102, is anchored to this core by the N-terminus of Sth1. Our cryo-EM analysis of RSC bound to a nucleosome core particle shows that in addition to the expected nucleosome-Sth1 interactions, RSC engages histones and nucleosomal DNA through one arm of the core structure, composed of the Rsc8 SWIRM domains, Sfh1 and Npl6. Our findings provide structural insights into the conserved assembly process for all members of the SWI/SNF family of remodelers, and illustrate how RSC selects, engages, and remodels nucleosomes

    Control of hyperglycaemia in paediatric intensive care (CHiP): study protocol.

    Get PDF
    BACKGROUND: There is increasing evidence that tight blood glucose (BG) control improves outcomes in critically ill adults. Children show similar hyperglycaemic responses to surgery or critical illness. However it is not known whether tight control will benefit children given maturational differences and different disease spectrum. METHODS/DESIGN: The study is an randomised open trial with two parallel groups to assess whether, for children undergoing intensive care in the UK aged <or= 16 years who are ventilated, have an arterial line in-situ and are receiving vasoactive support following injury, major surgery or in association with critical illness in whom it is anticipated such treatment will be required to continue for at least 12 hours, tight control will increase the numbers of days alive and free of mechanical ventilation at 30 days, and lead to improvement in a range of complications associated with intensive care treatment and be cost effective. Children in the tight control group will receive insulin by intravenous infusion titrated to maintain BG between 4 and 7.0 mmol/l. Children in the control group will be treated according to a standard current approach to BG management. Children will be followed up to determine vital status and healthcare resources usage between discharge and 12 months post-randomisation. Information regarding overall health status, global neurological outcome, attention and behavioural status will be sought from a subgroup with traumatic brain injury (TBI). A difference of 2 days in the number of ventilator-free days within the first 30 days post-randomisation is considered clinically important. Conservatively assuming a standard deviation of a week across both trial arms, a type I error of 1% (2-sided test), and allowing for non-compliance, a total sample size of 1000 patients would have 90% power to detect this difference. To detect effect differences between cardiac and non-cardiac patients, a target sample size of 1500 is required. An economic evaluation will assess whether the costs of achieving tight BG control are justified by subsequent reductions in hospitalisation costs. DISCUSSION: The relevance of tight glycaemic control in this population needs to be assessed formally before being accepted into standard practice

    Albumin Administration in Patients with Severe Sepsis Due to Secondary Peritonitis

    Get PDF
    BackgroundTo determine whether or not intravenous administration of human albumin can reduce mortality in patients with severe sepsis due to secondary peritonitis.MethodsAdult patients who were admitted to the surgical intensive care unit (SICU) who fulfilled the criteria of severe sepsis due to secondary peritonitis were consecutively included in this retrospective study. Patients who received and those who did not receive at least a daily minimum of 25 g intravenous human albumin for 3 days during their first 7 days of SICU admission were classified as the study group and control group, respectively.ResultsA total of 133 patients were included in this study. For patients with baseline serum albumin ≤ 20 g/L, 28-day mortality was significantly lower in the study group. For patients with baseline serum albumin > 20 g/L, albumin administration had no significant effects on 28-day mortality.ConclusionFor patients with severe sepsis due to secondary peritonitis, albumin administration may reduce 28-day mortality in patients whose baseline serum albumin is ≤ 20 g/L, but no such effect was found in patients whose baseline serum albumin was > 20 g/L

    Early, Goal-Directed Therapy for Septic Shock - A Patient-Level Meta-Analysis

    Get PDF
    BACKGROUND: After a single-center trial and observational studies suggesting that early, goal-directed therapy (EGDT) reduced mortality from septic shock, three multicenter trials (ProCESS, ARISE, and ProMISe) showed no benefit. This meta-analysis of individual patient data from the three recent trials was designed prospectively to improve statistical power and explore heterogeneity of treatment effect of EGDT. METHODS: We harmonized entry criteria, intervention protocols, outcomes, resource-use measures, and data collection across the trials and specified all analyses before unblinding. After completion of the trials, we pooled data, excluding the protocol-based standard-therapy group from the ProCESS trial, and resolved residual differences. The primary outcome was 90-day mortality. Secondary outcomes included 1-year survival, organ support, and hospitalization costs. We tested for treatment-by-subgroup interactions for 16 patient characteristics and 6 care-delivery characteristics. RESULTS: We studied 3723 patients at 138 hospitals in seven countries. Mortality at 90 days was similar for EGDT (462 of 1852 patients [24.9%]) and usual care (475 of 1871 patients [25.4%]); the adjusted odds ratio was 0.97 (95% confidence interval, 0.82 to 1.14; P=0.68). EGDT was associated with greater mean (±SD) use of intensive care (5.3±7.1 vs. 4.9±7.0 days, P=0.04) and cardiovascular support (1.9±3.7 vs. 1.6±2.9 days, P=0.01) than was usual care; other outcomes did not differ significantly, although average costs were higher with EGDT. Subgroup analyses showed no benefit from EGDT for patients with worse shock (higher serum lactate level, combined hypotension and hyperlactatemia, or higher predicted risk of death) or for hospitals with a lower propensity to use vasopressors or fluids during usual resuscitation. CONCLUSIONS: In this meta-analysis of individual patient data, EGDT did not result in better outcomes than usual care and was associated with higher hospitalization costs across a broad range of patient and hospital characteristics. (Funded by the National Institute of General Medical Sciences and others; PRISM ClinicalTrials.gov number, NCT02030158.
    corecore