91 research outputs found
Optically controlled energy transfer in stacked and coplanar polycyclic chromophores
In the search for enhanced control over the process of resonance energy transfer in multichromophore molecular systems, all-optical mechanisms offer many significant advantages over other systems. One recently conceived scheme, based on the optical switching of energy transfer, is achieved by coupling a normally forbidden decay transition with pulses of off-resonant laser light. Earlier work has suggested that such systems could offer levels of efficiency that might approach those associated with the usual Forster mechanism. In this Letter, the ab initio results of specific calculations on stacked and coplanar polycyclic chromophores are reported. The results show that by judicious choice of electronic state and laser wavelength, much higher levels of efficiency are achievable. A possible scheme for the implementation of such a system is discussed with regard to its potential use in energy harvesting and optical switching applications. © 2010 American Chemical Society
Measurement of the residual energy of muons in the Gran Sasso underground Laboratories
The MACRO detector was located in the Hall B of the Gran Sasso underground
Laboratories under an average rock overburden of 3700 hg/cm^2. A transition
radiation detector composed of three identical modules, covering a total
horizontal area of 36 m^2, was installed inside the empty upper part of the
detector in order to measure the residual energy of muons. This paper presents
the measurement of the residual energy of single and double muons crossing the
apparatus. Our data show that double muons are more energetic than single ones.
This measurement is performed over a standard rock depth range from 3000 to
6500 hg/cm^2.Comment: 28 pages, 9 figure
Muon Energy Estimate Through Multiple Scattering with the Macro Detector
Muon energy measurement represents an important issue for any experiment
addressing neutrino induced upgoing muon studies. Since the neutrino
oscillation probability depends on the neutrino energy, a measurement of the
muon energy adds an important piece of information concerning the neutrino
system. We show in this paper how the MACRO limited streamer tube system can be
operated in drift mode by using the TDC's included in the QTPs, an electronics
designed for magnetic monopole search. An improvement of the space resolution
is obtained, through an analysis of the multiple scattering of muon tracks as
they pass through our detector. This information can be used further to obtain
an estimate of the energy of muons crossing the detector. Here we present the
results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines,
to provide a full check of the electronics and to exploit the feasibility of
such a multiple scattering analysis. We show that by using a neural network
approach, we are able to reconstruct the muon energy for 40 GeV. The
test beam data provide an absolute energy calibration, which allows us to apply
this method to MACRO data.Comment: 25 pages, 11 figures, Submitted to Nucl. Instr. & Meth.
Low energy atmospheric muon neutrinos in MACRO
We present the measurement of two event samples induced by atmospheric
of average energy . In the first sample,
the neutrino interacts inside the MACRO detector producing an upward-going muon
leaving the apparatus. The ratio of the number of observed to expected events
is with an angular
distribution similar to that expected from the Bartol atmospheric neutrino
flux. The second is a mixed sample of internally produced downward-going muons
and externally produced upward-going muons stopping inside the detector. These
two subsamples are selected by topological criteria; the lack of timing
information makes it impossible to distinguish stopping from downgoing muons.
The ratio of the number of observed to expected events is . Using the ratio of the two subsamples (for
which most theoretical uncertainties cancel) we can test the pathlength
dependence of the oscillation hypothesis. The probability of agreement with the
no-oscillation hypothesis is 5% .
The deviations of our observations from the expectations has a preferred
interpretation in terms of oscillations with maximal mixing and
. These parameters are in agreement
with our results from upward throughgoing muons, induced by of much
higher energies.Comment: 7 pages, 6 figures. Submitted to Phys. Lett.
Search for diffuse neutrino flux from astrophysical sources with MACRO
Many galactic and extragalactic astrophysical sources are currently
considered promising candidates as high energy neutrino emitters. Astrophysical
neutrinos can be detected as upward-going muons produced in charged-current
interactions with the medium surrounding the detector. The expected neutrino
fluxes from various models start to dominate on the atmospheric neutrino
background at neutrino energies above some tens of TeV. We present the results
of a search for an excess of high energy upward-going muons among the sample of
data collected by MACRO during ~5.8 years of effective running time. No
significant evidence for this signal was found. As a consequence, an upper
limit on the flux of upward-going muons from high-energy neutrinos was set at
the level of 1.7 10^(-14) cm^(-2) s^(-1) sr^(-1).
The corresponding upper limit for the diffuse neutrino flux was evaluated
assuming a neutrino power law spectrum. Our result was compared with
theoretical predictions and upper limits from other experiments.Comment: 19 pages, 8 figures, 2 table
Measurement of the atmospheric neutrino-induced upgoing muon flux using MACRO
We present a measurement of the flux of neutrino-induced upgoing muons
(~100 GeV) using the MACRO detector. The ratio of the number of observed
to expected events integrated over all zenith angles is 0.74 +/- 0.036 (stat)
+/- 0.046(systematic) +/- 0.13 (theoretical). The observed zenith distribution
for -1.0 < cos(theta) < -0.1 does not fit well with the no oscillation
expectation, giving a maximum probability for chi^2 of 0.1%. The acceptance of
the detector has been extensively studied using downgoing muons, independent
analyses and Monte-Carlo simulations. The other systematic uncertainties cannot
be the source of the discrepancies between the data and expectations. We have
investigated whether the observed number of events and the shape of the zenith
distribution can be explained by a neutrino oscillation hypothesis. Fitting
either the flux or zenith distribution independently yields mixing parameters
of sin^2 (2theta)=1.0 and delta m^2 of a few times 10^-3 eV^2. However, the
observed zenith distribution does not fit well with any expectations giving a
maximum probability for chi^2 of 5% for the best oscillation hypothesis, and
the combined probability for the shape and number of events is 17%. We conclude
that these data favor a neutrino oscillation hypothesis, but with unexplained
structure in the zenith distribution not easily explained by either the
statistics or systematics of the experiment.Comment: 7 pages (two-column) with 4 figure
The primary cosmic ray composition between 10**15 and 10**16 eV from Extensive Air Showers electromagnetic and TeV muon data
The cosmic ray primary composition in the energy range between 10**15 and
10**16 eV, i.e., around the "knee" of the primary spectrum, has been studied
through the combined measurements of the EAS-TOP air shower array (2005 m
a.s.l., 10**5 m**2 collecting area) and the MACRO underground detector (963 m
a.s.l., 3100 m w.e. of minimum rock overburden, 920 m**2 effective area) at the
National Gran Sasso Laboratories. The used observables are the air shower size
(Ne) measured by EAS-TOP and the muon number (Nmu) recorded by MACRO. The two
detectors are separated on average by 1200 m of rock, and located at a
respective zenith angle of about 30 degrees. The energy threshold at the
surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons
are produced in the early stages of the shower development and in a kinematic
region quite different from the one relevant for the usual Nmu-Ne studies. The
measurement leads to a primary composition becoming heavier at the knee of the
primary spectrum, the knee itself resulting from the steepening of the spectrum
of a primary light component (p, He). The result confirms the ones reported
from the observation of the low energy muons at the surface (typically in the
GeV energy range), showing that the conclusions do not depend on the production
region kinematics. Thus, the hadronic interaction model used (CORSIKA/QGSJET)
provides consistent composition results from data related to secondaries
produced in a rapidity region exceeding the central one. Such an evolution of
the composition in the knee region supports the "standard" galactic
acceleration/propagation models that imply rigidity dependent breaks of the
different components, and therefore breaks occurring at lower energies in the
spectra of the light nuclei.Comment: Submitted to Astroparticle Physic
Mammographic Density Change With Estrogen and Progestin Therapy and Breast Cancer Risk
Background: Estrogen plus progestin therapy increases both mammographic density and breast cancer incidence. Whether mammographic density change associated with estrogen plus progestin initiation predicts breast cancer risk is unknown. Methods: We conducted an ancillary nested case-control study within the Women's Health Initiative trial that randomly assigned postmenopausal women to daily conjugated equine estrogen 0.625 mg plus medroxyprogesterone acetate 2.5 mg or placebo. Mammographic density was assessed from mammograms taken prior to and one year after random assignment for 174 women who later developed breast cancer (cases) and 733 healthy women (controls). Logistic regression analyses included adjustment for confounders and baseline mammographic density when appropriate. Results: Among women in the estrogen plus progestin arm (97 cases/378 controls), each 1% positive change in percent mammographic density increased breast cancer risk 3% (odds ratio [OR] = 1.03, 95% confidence interval [CI] = 1.01 to 1.06). For women in the highest quintile of mammographic density change (>19.3% increase), breast cancer risk increased 3.6-fold (95% CI = 1.52 to 8.56). The effect of estrogen plus progestin use on breast cancer risk (OR = 1.28, 95% CI = 0.90 to 1.82) was eliminated in this study, after adjusting for change in mammographic density (OR = 1.00, 95% CI = 0.66 to 1.51). Conclusions: We found the one-year change in mammographic density after estrogen plus progestin initiation predicted subsequent increase in breast cancer risk. All of the increased risk from estrogen plus progestin use was mediated through mammographic density change. Doctors should evaluate changes in mammographic density with women who initiate estrogen plus progestin therapy and discuss the breast cancer risk implications
GRB 010222: A burst within a starburst
We present millimeter- and submillimeter-wavelength observations and near-infrared K-band imaging toward the bright gamma-ray burst GRB 010222. Over seven different epochs, a constant source was detected with an average flux density of 3.74 ± 0.53 mJy at 350 GHz and 1.05 ± 0.22 mJy at 250 GHz, giving a spectral index α = 3.78 ± 0.25 (where F ∝ vα). We rule out the possibility that this emission originated from the burst or its afterglow, and we conclude that it is due to a dusty, high-redshift starburst galaxy (SMM J14522 + 4301). We argue that the host galaxy of GRB 010222 is the most plausible counterpart of SMM J14522+4301, based in part on the centimeter detection of the host at the expected level. The optical/near-IR properties of the host galaxy of GRB 010222 suggest that it is a blue sub-L* galaxy, similar to other GRB host galaxies. This contrasts with the enormous far-infrared luminosity of this galaxy based on our submillimeter detection (LBol ≈ 4 × 10 12 L⊙). We suggest that this GRB host galaxy has a very high star formation rate, SFR ≈ 600 M⊙ yr -1, most of which is unseen at optical wavelengths
ATHENA detector proposal — a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider
ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity. This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges
- …