117 research outputs found
Vascular risk factors and diabetic neuropathy
Background: Other than glycemic control, there are no treatments for diabetic neuropathy. Thus, identifying potentially modifiable risk factors for neuropathy is crucial. We studied risk factors for the development of distal symmetric neuropathy in 1172 patients with type 1 diabetes mellitus from 31 centers participating in the European Diabetes (EURODIAB) Prospective Complications Study.
Methods: Neuropathy was assessed at baseline (1989 to 1991) and at follow-up (1997 to 1999), with a mean (±SD) follow-up of 7.3±0.6 years. A standardized protocol included clinical evaluation, quantitative sensory testing, and autonomic-function tests. Serum lipids and lipoproteins, glycosylated hemoglobin, and the urinary albumin excretion rate were measured in a central laboratory.
Results: At follow-up, neuropathy had developed in 276 of 1172 patients without neuropathy at baseline (23.5 percent). The cumulative incidence of neuropathy was related to the glycosylated hemoglobin value and the duration of diabetes. After adjustment for these factors, we found that higher levels of total and low-density lipoprotein cholesterol and triglycerides, a higher body-mass index, higher von Willebrand factor levels and urinary albumin excretion rate, hypertension, and smoking were all significantly associated with the cumulative incidence of neuropathy. After adjustment for other risk factors and diabetic complications, we found that duration of diabetes, current glycosylated hemoglobin value, change in glycosylated hemoglobin value during the follow-up period, body-mass index, and smoking remained independently associated with the incidence of neuropathy. Cardiovascular disease at baseline was associated with double the risk of neuropathy, independent of cardiovascular risk factors.
Conclusions: This prospective study indicates that, apart from glycemic control, the incidence of neuropathy is associated with potentially modifiable cardiovascular risk factors, including a raised triglyceride level, body-mass index, smoking, and hypertension
Vascular risk factors and diabetic neuropathy
Background: Other than glycemic control, there are no treatments for diabetic neuropathy. Thus, identifying potentially modifiable risk factors for neuropathy is crucial. We studied risk factors for the development of distal symmetric neuropathy in 1172 patients with type 1 diabetes mellitus from 31 centers participating in the European Diabetes (EURODIAB) Prospective Complications Study.
Methods: Neuropathy was assessed at baseline (1989 to 1991) and at follow-up (1997 to 1999), with a mean (±SD) follow-up of 7.3±0.6 years. A standardized protocol included clinical evaluation, quantitative sensory testing, and autonomic-function tests. Serum lipids and lipoproteins, glycosylated hemoglobin, and the urinary albumin excretion rate were measured in a central laboratory.
Results: At follow-up, neuropathy had developed in 276 of 1172 patients without neuropathy at baseline (23.5 percent). The cumulative incidence of neuropathy was related to the glycosylated hemoglobin value and the duration of diabetes. After adjustment for these factors, we found that higher levels of total and low-density lipoprotein cholesterol and triglycerides, a higher body-mass index, higher von Willebrand factor levels and urinary albumin excretion rate, hypertension, and smoking were all significantly associated with the cumulative incidence of neuropathy. After adjustment for other risk factors and diabetic complications, we found that duration of diabetes, current glycosylated hemoglobin value, change in glycosylated hemoglobin value during the follow-up period, body-mass index, and smoking remained independently associated with the incidence of neuropathy. Cardiovascular disease at baseline was associated with double the risk of neuropathy, independent of cardiovascular risk factors.
Conclusions: This prospective study indicates that, apart from glycemic control, the incidence of neuropathy is associated with potentially modifiable cardiovascular risk factors, including a raised triglyceride level, body-mass index, smoking, and hypertension
Catheter-based techniques for addressing atrioventricular valve regurgitation in adult congenital heart disease patients: a descriptive cohort
Introduction: Increasing survival of adult congenital heart disease (ACHD) patients comes at the price of a range of late complications—arrhythmias, heart failure, and valvular dysfunction. Transcatheter valve interventions have become a legitimate alternative to conventional surgical treatment in selected acquired heart disease patients. However, literature on technical aspects, hemodynamic effects, and clinical outcomes of percutaneous atrioventricular (AV) valve interventions in ACHD patients is scarce. Method: This is a descriptive cohort from CAHAL (Center of Congenital Heart Disease Amsterdam-Leiden). ACHD patients with severe AV valve regurgitation who underwent a transcatheter intervention in the period 2020–2022 were included. Demographic, clinical, procedural, and follow-up data were collected from patient records. Results: Five ACHD patients with severe or torrential AV valve regurgitation are described. Two patients underwent a transcatheter edge-to-edge repair (TEER), one patient underwent a valve-in-valve procedure, one patient received a Cardioband system, and one patient received both a Cardioband system and TEER. No periprocedural complications occurred. Post-procedural AV valve regurgitation as well as NYHA functional class improved in all patients. The median post-procedural NYHA functional class improved from 3.0 (IQR [2.5–4.0]) to 2.0 (IQR [1.5–2.5]). One patient died 9 months after the procedure due to advanced heart failure with multiorgan dysfunction. Conclusion: Transcatheter valve repair is feasible and safe in selected complex ACHD patients. A dedicated heart team is essential for determining an individualized treatment strategy as well as pre- and periprocedural imaging to address the underlying mechanism(s) of AV regurgitation and guide the transcatheter intervention. Long-term follow-up is essential to evaluate the clinical outcomes of transcatheter AV valve repair in ACHD patients. Thoracic Surger
A microwave discharge source operating at pressures of several atmospheres
The design of a microwave source in which a discharge is initiated by an electromagnetic surface wave at 2.45 GHz is described. A stable discharge was supported at a gas pressure p (0) exceeding the atmospheric pressure in He, N-2, and in H-2-Ar, H-2-He, and O-2-He mixtures in a 2-mm inner diameter quartz tube with a 0.15-mm diameter nozzle at a 50- to 115-W microwave power. A degree of dissociation of up to 80% was reached for pure H-2 at p (0) = 6 Torr and a 6% mixture of H-2 and He at p (0) = 50 Torr. When p (0) increases to 19 Torr for H-2 and to 300 Torr for the mixture, the hydrogen-atom beam intensity, in spite of a decrease in the degree of dissociation, increases due to narrowing of the beam particle velocity distribution
Genetic insights into resting heart rate and its role in cardiovascular disease
Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development
Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls
Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of less than 0.5%) in 4 genes at exome-wide significance, including a series of more than 30 SLC30A8 alleles that conveys protection against T2D, and in 12 gene sets, including those corresponding to T2D drug targets (P = 6.1 × 10−3) and candidate genes from knockout mice (P = 5.2 × 10−3). Within our study, the strongest T2D gene-level signals for rare variants explain at most 25% of the heritability of the strongest common single-variant signals, and the gene-level effect sizes of the rare variants that we observed in established T2D drug targets will require 75,000–185,000 sequenced cases to achieve exome-wide significance. We propose a method to interpret these modest rare-variant associations and to incorporate these associations into future target or gene prioritization efforts
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes
Hundreds of thousands of genetic variants have been reported to cause severe monogenic diseases, but the probability that a variant carrier develops the disease (termed penetrance) is unknown for virtually all of them. Additionally, the clinical utility of common polygenetic variation remains uncertain. Using exome sequencing from 77,184 adult individuals (38,618 multi-ancestral individuals from a type 2 diabetes case-control study and 38,566 participants from the UK Biobank, for whom genotype array data were also available), we apply clinical standard-of-care gene variant curation for eight monogenic metabolic conditions. Rare variants causing monogenic diabetes and dyslipidemias display effect sizes significantly larger than the top 1% of the corresponding polygenic scores. Nevertheless, penetrance estimates for monogenic variant carriers average 60% or lower for most conditions. We assess epidemiologic and genetic factors contributing to risk prediction in monogenic variant carriers, demonstrating that inclusion of polygenic variation significantly improves biomarker estimation for two monogenic dyslipidemias
New Blood Pressure-Associated Loci Identified in Meta-Analyses of 475,000 Individuals
Background - Genome-wide association studies have recently identified >400 loci that harbor DNA sequence variants that influence blood pressure (BP). Our earlier studies identified and validated 56 single nucleotide variants (SNVs) associated with BP from meta-analyses of exome chip genotype data. An additional 100 variants yielded suggestive evidence of association. Methods and Results - Here, we augment the sample with 140 886 European individuals from the UK Biobank, in whom 77 of the 100 suggestive SNVs were available for association analysis with systolic BP or diastolic BP or pulse pressure. We performed 2 meta-analyses, one in individuals of European, South Asian, African, and Hispanic descent (pan-ancestry, ≈475 000), and the other in the subset of individuals of European descent (≈423 000). Twenty-one SNVs were genome-wide significant (P<5×10-8) for BP, of which 4 are new BP loci: rs9678851 (missense, SLC4A1AP), rs7437940 (AFAP1), rs13303 (missense, STAB1), and rs1055144 (7p15.2). In addition, we identified a potentially independent novel BP-associated SNV, rs3416322 (missense, SYNPO2L) at a known locus, uncorrelated with the previously reported SNVs. Two SNVs are associated with expression levels of nearby genes, and SNVs at 3 loci are associated with other traits. One SNV with a minor allele frequency <0.01, (rs3025380 at DBH) was genome-wide significant. Conclusions - We report 4 novel loci associated with BP regulation, and 1 independent variant at an established BP locus. This analysis highlights several candidate genes with variation that alter protein function or gene expression for potential follow-up
Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for variation across ancestries
Subcortical brain structures are involved in developmental, psychiatric and neurological disorders. Here we performed genome-wide association studies meta-analyses of intracranial and nine subcortical brain volumes (brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus accumbens, amygdala and the ventral diencephalon) in 74,898 participants of European ancestry. We identified 254 independent loci associated with these brain volumes, explaining up to 35% of phenotypic variance. We observed gene expression in specific neural cell types across differentiation time points, including genes involved in intracellular signaling and brain aging-related processes. Polygenic scores for brain volumes showed predictive ability when applied to individuals of diverse ancestries. We observed causal genetic effects of brain volumes with Parkinson’s disease and attention-deficit/hyperactivity disorder. Findings implicate specific gene expression patterns in brain development and genetic variants in comorbid neuropsychiatric disorders, which could point to a brain substrate and region of action for risk genes implicated in brain diseases. Stress-related psychiatric disorders across the life spa
- …
