1,277 research outputs found

    The Sledge.

    Get PDF

    Adsorbate-induced surface stress, surface strain and surface reconstruction : S on Cu(100) and Ni(100)

    Get PDF
    Density functional theory (DFT) calculations have been applied to investigate the known difference in behaviour of S adsorption on Cu(100) and Ni(100). Both surfaces form a 0.25 ML (2 × 2) adsorption phase, but while at higher coverage a 0.5 ML c(2 × 2) phase forms on Ni(100), on Cu(100) only a reconstructed 0.47 ML (√17 × √17)R14° structure occurs. Calculations of the energy, structure, and surface stress of (2 × 2) and c(2 × 2) phases on both substrates show there is an energy advantage on both surfaces to form the higher coverage phase, but that both surfaces show local surface strain around the S atoms in the (2 × 2) phase, a phenomenon previously investigated only on Cu(100). More than forty different structural models of the Cu(100)(√17 × √17)R14°-S phase have been investigated. The pseudo-(100)c(2 × 2) structure previously proposed, containing 16 Cu adatoms per unit mesh in the reconstructed layer, is found to be less energetically favourable than many other possible structures, even after taking account of local structural relaxations. Significantly more favourable is a structure with 12 Cu adatoms per (√17 × √17)R14° unit mesh, previously proposed on the basis of scanning tunnelling microscopy (STM), and found to yield simulated STM images in good agreement with experiment. This model has all S atoms in local 4-fold coordinated hollows relative to the Cu atoms below, half being located above Cu adatoms with the remainder lying above the underlying outermost substrate layer. However, an alternative model with only 4 Cu adatoms and with half the S atoms at 3-fold coordinated sites on the periphery of the Cu adatom cluster, has an even lower energy and gives simulated STM images in excellent agreement with experiment

    Seasonal Antarctic pressure variability during the twentieth century from spatially complete reconstructions and CAM5 simulations

    Get PDF
    As most permanent observations in Antarctica started in the 1950s, understanding Antarctic climate variations throughout the twentieth century remains a challenge. To address this issue, the non-summer multi-decadal variability in pressure reconstructions poleward of 60°S is evaluated and assessed in conjunction with climate model simulations throughout the twentieth and early twenty-first centuries to understand historical atmospheric circulation variability over Antarctica. Austral autumn and winter seasons show broadly similar patterns, with negative anomalies in the early twentieth century (1905–1934), positive pressure anomalies in the middle twentieth century (1950–1980), and negative pressure anomalies in the most recent period (1984–2013), consistent with concurrent trends in the SAM index. In autumn, the anomalies are significant in the context of estimates of interannual variability and reconstruction uncertainty across most of the Antarctic continent, and the reconstructed patterns agree best with model-generated patterns when the simulation includes the forced response to tropical sea surface temperatures and external radiative forcing. In winter and spring, the reconstructed anomalies are less significant and are consistent with internal atmospheric variability alone. The specific role of tropical SST variability on pressure trends in these seasons is difficult to assess due to low reconstruction skill in the region of strongest tropical teleconnections, the large internal atmospheric variability, and uncertainty in the SST patterns themselves. Indirect estimates of pressure variability, whether through sea ice reconstructions, proxy records, or improved models and data assimilation schemes, will help to further constrain the magnitude of internal variability relative to the forced responses expected from SST trends and external radiative forcing

    An introduction to local area networks

    Full text link

    The use of mid-infrared spectrometry to predict body energy status of Holstein cows

    Get PDF
    Energy balance, especially in early lactation, is known to be associated with subsequent health and fertility in dairy cows. However, its inclusion in routine management decisions or breeding programs is hindered by the lack of quick, easy, and inexpensive measures of energy balance. The objective of this study was to evaluate the potential of mid-infrared (MIR) analysis of milk, routinely available from all milk samples taken as part of large-scale milk recording and milk payment operations, to predict body energy status and related traits in lactating dairy cows. The body energy status traits investigated included energy balance and body energy content. The related traits of body condition score and energy intake were also considered. Measurements on these traits along with milk MIR spectral data were available on 17 different test days from 268 cows (418 lactations) and were used to develop the prediction equations using partial least squares regression. Predictions were externally validated on different independent subsets of the data and the results averaged. The average accuracy of predicting body energy status from MIR spectral data was as high as 75% when energy balance was measured across lactation. These predictions of body energy status were considerably more accurate than predictions obtained from the sometimes proposed fat-to-protein ratio in milk. It is not known whether the prediction generated from MIR data are a better reflection of the true (unknown) energy status than the actual energy status measures used in this study. However, results indicate that the approach described may be a viable method of predicting individual cow energy status for a large scale of application

    Domestic Rivalry and Export Performance: Theory and Evidence from International Airline Markets

    Get PDF
    The much-studied relationship between domestic rivalry and export performance consists of those supporting a national-champion rationale, and those supporting a rivalry rationale. While the empirical literature generally supports the positive effects of domestic rivalry, the national-champion rationale actually rests on firmer theoretical ground. We address this inconsistency by providing a theoretical framework that illustrates three paths via which domestic rivalry translates into enhanced international exports. Furthermore, empirical tests on the world airline industry elicit the existence of one particular path - an enhanced firm performance effect - that connects domestic rivalry with improved international exports

    The local structure of SO2 and SO3 on Ni(1 1 1): a scanned-energy mode photoelectron diffraction study

    Get PDF
    O 1s and S 2p scanned-energy mode photoelectron diffraction (PhD) data, combined with multiple-scattering simulations, have been used to determine the local adsorption geometry of the SO2 and SO3 species on a Ni(1 1 1) surface. For SO2, the application of reasonable constraints on the molecular conformation used in the simulations leads to the conclusion that the molecule is centred over hollow sites on the surface, with the molecular plane essentially parallel to the surface, and with both S and O atoms offset from atop sites by almost the same distance of 0.65 Ã…. For SO3, the results are consistent with earlier work which concluded that surface bonding is through the O atoms, with the S atom higher above the surface and the molecular symmetry axis almost perpendicular to the surface. Based on the O 1s PhD data alone, three local adsorption geometries are comparably acceptable, but only one of these is consistent with the results of an earlier normal-incidence X-ray standing wave (NIXSW) study. This optimised structural model differs somewhat from that originally proposed in the NIXSW investigation

    Saturn's icy satellites and rings investigated by Cassini - VIMS. III. Radial compositional variability

    Full text link
    In the last few years Cassini-VIMS, the Visible and Infared Mapping Spectrometer, returned to us a comprehensive view of the Saturn's icy satellites and rings. After having analyzed the satellites' spectral properties (Filacchione et al. (2007a)) and their distribution across the satellites' hemispheres (Filacchione et al. (2010)), we proceed in this paper to investigate the radial variability of icy satellites (principal and minor) and main rings average spectral properties. This analysis is done by using 2,264 disk-integrated observations of the satellites and a 12x700 pixels-wide rings radial mosaic acquired with a spatial resolution of about 125 km/pixel. The comparative analysis of these data allows us to retrieve the amount of both water ice and red contaminant materials distributed across Saturn's system and the typical surface regolith grain sizes. These measurements highlight very striking differences in the population here analyzed, which vary from the almost uncontaminated and water ice-rich surfaces of Enceladus and Calypso to the metal/organic-rich and red surfaces of Iapetus' leading hemisphere and Phoebe. Rings spectra appear more red than the icy satellites in the visible range but show more intense 1.5-2.0 micron band depths. The correlations among spectral slopes, band depths, visual albedo and phase permit us to cluster the saturnian population in different spectral classes which are detected not only among the principal satellites and rings but among co-orbital minor moons as well. Finally, we have applied Hapke's theory to retrieve the best spectral fits to Saturn's inner regular satellites using the same methodology applied previously for Rhea data discussed in Ciarniello et al. (2011).Comment: 44 pages, 27 figures, 7 tables. Submitted to Icaru
    • …
    corecore