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  ABSTRACT 

  Energy balance, especially in early lactation, is known 
to be associated with subsequent health and fertility in 
dairy cows. However, its inclusion in routine manage-
ment decisions or breeding programs is hindered by the 
lack of quick, easy, and inexpensive measures of energy 
balance. The objective of this study was to evaluate 
the potential of mid-infrared (MIR) analysis of milk, 
routinely available from all milk samples taken as part 
of large-scale milk recording and milk payment opera-
tions, to predict body energy status and related traits 
in lactating dairy cows. The body energy status traits 
investigated included energy balance and body energy 
content. The related traits of body condition score and 
energy intake were also considered. Measurements on 
these traits along with milk MIR spectral data were 
available on 17 different test days from 268 cows (418 
lactations) and were used to develop the prediction 
equations using partial least squares regression. Predic-
tions were externally validated on different indepen-
dent subsets of the data and the results averaged. The 
average accuracy of predicting body energy status from 
MIR spectral data was as high as 75% when energy bal-
ance was measured across lactation. These predictions 
of body energy status were considerably more accurate 
than predictions obtained from the sometimes proposed 
fat-to-protein ratio in milk. It is not known whether 
the prediction generated from MIR data are a better 
reflection of the true (unknown) energy status than the 
actual energy status measures used in this study. How-
ever, results indicate that the approach described may 

be a viable method of predicting individual cow energy 
status for a large scale of application. 
  Key words:    mid-infrared ,  energy balance ,  intake , 
 prediction 

  INTRODUCTION 

  Several studies have implicated the extent and du-
ration of negative energy balance as a precursor for 
impaired health and fertility in dairy cows (Beam and 
Butler, 1999; Collard et al., 2000; Veerkamp et al., 
2000). As such, energy balance would be useful in a 
breeding program, as it is also known to exhibit signifi-
cant genetic variation (Veerkamp et al., 2000; Berry et 
al., 2007). Although some of the importance of energy 
balance may be captured in a breeding goal that directly 
includes health and fertility traits, energy balance itself 
is a measure of the ability of an animal to maintain 
homeostasis and, therefore, the overall health and wel-
fare status of the animal. However, the limiting factor 
hindering the inclusion of energy balance in breeding 
programs worldwide is the high cost associated with its 
measurement, most accurately measured through the 
use of expensive, low-throughput calorimeter chambers. 

  Several alternative methods have been proposed to 
estimate energy balance in dairy cattle, most consider-
ing the differential between energy intake and energy 
output as milk, maintenance, pregnancy, activity, and 
growth (Banos and Coffey, 2010). However, such meth-
ods also have high associated costs due predominantly 
to the accurate measurement of cow energy intake. 
Recently, less expensive alternatives to evaluating en-
ergy balance on a large scale have also been presented 
(Coffey et al., 2003; Friggens et al., 2007; Banos and 
Coffey, 2010). These methods consider the change in 
body reserves as a feasible method to evaluate energy 
balance on potentially large numbers of animals. The 
drawback to these methods is that they require regular 
measurements of BCS and BW, neither of which is rou-
tinely available on all commercial dairy farms. 
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Mid-infrared (MIR) spectral data is routinely used 
by milk recording organizations worldwide to predict 
the milk fat and protein composition in milk samples. 
In addition, it has been shown that some individual 
milk fatty acids can be accurately predicted using MIR 
spectroscopy (Soyeurt et al., 2011). Previous studies 
have attempted to predict energy balance using milk 
composition measures such as fat-to-protein ratio 
(Grieve et al. 1986; Heuer et al., 2000; Friggens et al., 
2007). Others have shown associations between milk 
fatty acid composition and energy balance (Stoop et al., 
2009). Because these predictor variables of energy bal-
ance are themselves predicted using MIR spectroscopy, 
this suggests that MIR spectral data may be useful as 
a direct predictor of energy balance.

The objective of this study was to predict body en-
ergy status directly from the MIR spectrum of milk. 
The MIR spectra data routinely generated for the milk 
samples of all milk-recorded commercial cows could po-
tentially be available in the near future. The approach 
developed in this study, if successful, will provide a 
method to obtain estimates of body energy status on 
large populations of cows at no additional cost to milk 
recording.

MATERIALS AND METHODS

Production Data

Performance data on all lactations from 1,145 cows 
collected between 1990 and 2010 from the Langhill herd 
of dairy cows currently stationed at Crichton Royal 
Farm (Dumfries, Scotland) were available to calculate 
body energy status. The Langhill experimental herd 
comprised 2 lines of Holstein cows divergently selected 
for over 30 yr, one line selected for maximum milk fat 
plus protein kilograms and the other maintained at the 
national average for milk fat plus protein (Pryce et al., 
1999). Cows were further divided into low- and high-
concentrate dietary treatments (Pryce et al., 1999). 
Prior to 2002, milking was undertaken twice daily 
(0400 and 1600 h). From 2002 onwards, milking was 
undertaken 3 times daily [0415 (a.m.), 1245 (MD), and 
1945 h (p.m.)]; milk yield was recorded for each milk-
ing and summed to obtain daily yield. Milk composi-
tion was recorded weekly and fat and protein content 
computed as the weighted average of all samples of an 
animal on a given day. Dry matter intake was recorded 
during lactation for 3 successive days, followed by 3 d 
of no measurement. Body weight was recorded using 
automatic weigh scales 3 times per day at milking and 
averaged to a weekly BW value. Body condition score 
was assessed by the same operator on a weekly basis 

using a scale of 0 to 5 with 0.25 intervals, where 0 is 
emaciated and 5 is obese (Lowman et al., 1976).

Age at calving was defined within parity, as a class 
variable (n = 3), with animals classed either as (1) 
less than, (2) greater than, or (3) within 1 standard 
deviation from the median age at calving. Two seasons 
of calving were defined: February to August, inclusive, 
and September to January, inclusive. All performance 
records from d 5 to 305 for animals in parities 1 through 
4 were retained for analysis. Data on 815,129 test days 
from 3,151 lactations of 1,145 cows were available to 
compute body energy status.

Computation of Body Energy Status

Computation of body energy status in the present 
study was based on the approach and methodology de-
scribed in detail by Banos and Coffey (2010). Random 
regression models were fitted in ASReml (Gilmour et 
al., 2006) to daily milk yield, fat percent, protein per-
cent, DMI, BCS, and BW, to provide daily solutions 
enabling the calculation of complete lactation profiles 
for energy balance to be derived. All random regres-
sion models were fitted within parity and included 
the fixed effects of genetic line, feeding group, year of 
calving by season of calving, age at calving, year of 
record by month of record, a fourth-order orthogonal 
polynomial on days postcalving, and the random effect 
of the interaction of cow by a fourth-order orthogonal 
polynomial on days postcalving. Six measurement er-
ror classes were fitted for DIM (4 < DIM ≤ 10, 10 < 
DIM ≤ 50, 50 < DIM ≤ 150, 150 < DIM ≤ 200, 200 
< DIM ≤ 250, and 250 < DIM). Relationships among 
cows were not accounted for and, thus, the random ef-
fects solutions include both the additive and permanent 
environmental effects of each cow. Daily solutions from 
each random regression model were visually compared 
with the actual data collected for each trait and 22 cow 
lactations were discarded from the analysis because of 
poor concordance between the actual recorded data 
and the predicted values from the random regression 
models on those days.

Two separate measures of body energy status were 
computed for each day postcalving using the energy 
system outlined by Emmans (1994). The measures con-
sidered were (1) energy balance (Direct_EB; MJ/d), 
a function of milk yield, fat and protein content, DMI, 
BW, and BCS; and (2) body energy content (EC; MJ), 
a function of BW and BCS, predicting body lipid and 
protein weight. These measures have previously been 
described in detail (Banos and Coffey, 2010). Addi-
tional to Direct_EB and EC, the effective energy intake 
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(EEI) per day (MJ/d; Banos and Coffey, 2010) was 
also computed.

Between September 2008 and May 2010, monthly 
milk samples from the a.m., MD, and p.m. milking on 
a given day for all Langhill cows (n = 277) were sent 
to Teagasc Moorepark in Ireland for analysis using an 
MIR spectrometer (MilkoScan FT6000; Foss, Hillerød, 
Denmark). The Foss MIR spectrum contains 1,060 
data points, which represent the absorption of infrared 
light through the milk sample at wavelengths in the 
900 cm−1 to 5,000 cm−1 region. The MIR spectrum was 
available for 6,665 milk samples from 18 test dates of 
465 lactations from 277 cows. The average number of 
spectrum records per cow lactation was 5.5 and ranged 
from 1 to 10 records.

Only spectral data with an actual phenotypic record 
for all traits of milk yield, fat percent, protein percent, 
DMI, BW, and BCS available within 7 d of the corre-
sponding milk sampling date were retained. These edits 
were undertaken to avoid any potential errors arising 
from extrapolation or interpolation between sampling 
with the random regressions. Following edits, a total of 
1,883 a.m., 1,731 MD and 1,855 p.m. spectral records 
were available.

Treatment of Spectral Data

Spectral data were transformed from transmittance 
to linear absorbance through a log10 transformation 
of the reciprocal of the wavelength values (Soyeurt et 
al., 2011). Boxcar smoothing (i.e., rolling average) was 
performed on the absorbance spectral data by averag-
ing the spectral data over spectral segments of 5 data 
points in length, [i.e., each absorbance value was re-
placed by the average of the absorbance value of its 4 
closest neighboring points (Williams, 2007)].

Furthermore, the first derivative was calculated on 
both the smoothed and unsmoothed absorbance spec-
tral data to bring all spectra to a common baseline and 
to sharpen absorbance bands. The first derivative (f’x) 
was calculated as the difference between the spectral 
value at data point X and the spectral value at data 
point X + 5, where 1 ≤ X ≤ 1,055.

Calibration and Validation Data Sets

Cows were stratified according to selection line, 
feeding treatment, and season of calving, and the data 
split randomly within stratum into 4 equally sized 
data sets. These were the 4 external validation data 
sets. For each external validation data set generated, 

a calibration data set was generated using the remain-
ing 75% of the data. The calibration data sets were 
used to develop the prediction equations using split-
sample cross-validation. This process was repeated 4 
times using a different data set for external validation 
each time, with the remaining 3 data sets used for the 
development of the equations, until all data had been 
tested using external validation exactly once. No cow 
was ever present in both the calibration and validation 
data sets for any of the 4 analyses.

To investigate if prediction equations calibrated us-
ing only information on cows on one feeding treatment 
could accurately predict the body energy status of cows 
on the other feeding treatment, a second set of calibra-
tion and validation data sets were created. In these 
data sets, only cows on the high-concentrate diet were 
included in the calibration data set, and only cows on 
the low-concentrate diet were included in the validation 
data set. The opposite was also tested, where only cows 
on the low-concentrate diet were included in the cali-
bration data set, with the prediction equation validated 
on cows on the high-concentrate diet only.

In a similar way, prediction equations were developed 
to test the predictive ability of equations calibrated on 
the select line of cows when validated on the control 
line of cows and vice versa.

Development of Prediction Equations

Partial least squares regression (Proc PLS; SAS In-
stitute Inc., Cary, NC) was used to predict Direct_EB, 
EC, BCS, and EEI from the MIR linear absorbance 
data. Separate predictions were undertaken using both 
unsmoothed and smoothed spectral data as well as the 
first derivative. For the purposes of this study, accu-
racy (R) of prediction was defined as the square root 
of the coefficient of determination from the regression 
model of true on predicted values of body energy sta-
tus. Partial least squares regression analysis uses a data 
reduction approach, with a variable number of explana-
tory factors used to explain the maximum amount of 
variation of the 1,060 correlated wavelength values. As 
the maximum number of explanatory factors permit-
ted in the prediction models is increased, the R of the 
cross-validation tends to improve at the expense of the 
R in the external validation. The maximum number 
of explanatory factors to describe MIR spectra was 
determined by visually inspecting the changes in R of 
split-sample cross-validation and external validation 
(i.e., validation on data independent of the calibration 
set) associated with increasing the number of permitted 
explanatory factors in the model. In a separate series of 
analyses, when the range of wavelengths to be included 
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in the model was decided on, milk yield was added to 
the model as a predictor.

The R of predicting body energy status measures 
during early (DIM <61), mid (60 < DIM < 180), and 
late (DIM ≥180) lactation was also tested using partial 
least squares regression on MIR spectra and milk yield. 
Only data from the period of lactation under investiga-
tion were included in the development and validation 
of the prediction equations. All prediction equations 
were undertaken using a.m., MD, and p.m. samples, 
separately, and R of all equations was tested using both 
split-sample cross-validation and external validation on 
the 4 calibration and validation data sets, respectively.

To test if the prediction equations generated by this 
study were more accurate than the previously proposed 
method of using the ratio of milk fat-to-protein contents 
(FPR) as a predictor of energy balance (Heuer et al., 
2000; Friggens et al., 2007), correlations between FPR 
and body energy status measures were tested across the 
entire lactation and for the 3 stages of lactation using 
p.m. milk samples.

RESULTS

Data

Mean performance of all cows included in the analy-
sis for Direct_EB, EC, and EEI, together with their 
component variables (milk yield, fat percent, protein 
percent, DMI, BCS, and BW), are summarized in 
Table 1. Performance in the calibration and validation 
data sets was comparable across all combinations of 
validation and calibration data sets used. Average Di-
rect_EB was negative for all 4 parities between 5 and 
305 DIM, albeit with large associated standard devia-
tions. Although, on average, cows on both feed systems 
initiated lactation at the same negative energy balance, 

the low-concentrate group remained in negative energy 
balance until very late lactation (d 288; Figure 1). In 
contrast, cows on the high-concentrate diet reached 
positive energy balance much earlier postcalving. The 
average range, within cow lactation, for the body en-
ergy status traits of Direct_EB, EC, BCS, and EEI 
was 49 MJ, 831 MJ, 0.3 units, and 50 MJ, respectively, 
across all animals.

Product moment correlations of energy status com-
ponent variables and FPR with Direct_EB, EC, BCS, 
and EEI are presented in Table 2 both for the entire 
lactation and for early lactation. Dry matter intake was 
the component variable most strongly correlated with 
Direct_EB both across lactation and in early lactation 
(DIM <61; correlation of 0.56). Correlations between 
FPR and all energy status measures were close to zero 
when measured across lactation or in mid or late lacta-
tion (results not shown), however were stronger in early 
lactation (correlation of −0.28 with Direct_EB). Corre-
lations between milk composition and Direct_EB were 
weaker in mid and late lactation (results not shown) 
than correlations in early lactation.

Accuracy of Prediction Across Lactation

The R of predicting the studied traits was dependent 
on the number of explanatory factors permitted in the 
prediction equations (Figure 2). As expected, the R of 
predicting Direct_EB, EC, BCS, and EEI was always 
lower in the external validation data set compared with 
the R achieved with split-sample cross-validation. The 
external validation is, by definition, independent of the 
calibration data set because the samples included in 
the validation data set were not used to calibrate the 
prediction equations. The R was greatest when up to 
20 factors were included in the prediction equations. 
These predictions were undertaken including only MIR 

Table 1. Number of records and mean performance (SD in parentheses) across parities 

Variable

Parity

1 2 3 4

Cows (n) 164 130 89 35
Records (n) 835 735 434 141
Milk (kg) 27.3 (6.5) 33.1 (8.2) 35.8 (9.6) 36.4 (9.5)
Fat (%) 3.7 (0.5) 3.7 (0.6) 3.9 (0.6) 3.9 (0.5)
Protein (%) 3.2 (0.3) 3.2 (0.3) 3.2 (0.3) 3.2 (0.3)
DMI (kg) 15.0 (3.7) 17.6 (4.1) 19.5 (3.9) 18.5 (4.1)
BCS 2.1 (0.3) 2.2 (0.3) 2.1 (0.3) 2.0 (0.4)
BW (kg) 532.2 (58.0) 610.5 (64.4) 656.8 (56.3) 671.6 (60.8)
Direct_EB1 (MJ/d) −2.9 (25.6) −5.9 (32.5) −2.9 (32.6) −18.0 (38.5)
Energy content (MJ) 4,670 (780) 5,409 (956) 5,749 (969) 5,749 (1,118)
Effective energy intake (MJ) 151.9 (37.4) 178.5 (41.6) 198.1 (40.3) 187.6 (41.7)
Fat-to-protein ratio 1.17 (0.12) 1.15 (0.13) 1.21 (0.13) 1.21 (0.10)
1Direct energy balance.



Journal of Dairy Science Vol. 94 No. 7, 2011

PREDICTING ENERGY STATUS USING MID-INFRARED SPECTROMETRY 3655

spectral data in the prediction model; when milk yield 
was included as a predictor, the optimum number of 
explanatory factors was also approximately 20.

The average R of predicting Direct_EB, EC, BCS, 
and EEI across all data sets when using unsmoothed 
MIR spectral data from a.m., MD, or p.m. milk is 
presented in Table 3. The average number of predic-
tion factors used in the partial least squares models 
ranged from between 14 and the maximum permitted, 
20. The R of prediction using external validation was 
consistently lower than split-sample cross-validation; 
this was also reflected in greater root mean square er-
ror in the external validation data set. On average, the 
R of prediction using external validation ranged from 
0.67 to 0.72 for Direct_EB, but was lower for EC, rang-
ing from 0.43 to 0.54. The R of predicting Direct_EB, 
EC, BCS, and EEI was greatest when predictions were 

made using the p.m. milk samples. The average slope 
between predicted and actual values of Direct_EB in 
the validation data sets was not different (P > 0.05) 
from 1, indicating that, on average, a unit difference in 
actual Direct_EB was also reflected in a difference in 
predicted Direct_EB of 1 unit. In contrast, the average 
slope between predicted and true values of EC ranged 
from 0.77 to 0.83 and was different (P < 0.05) from 
1. The mean bias of predicting body energy status in 
the individual external validation data sets ranged from 
negative values, where models tended to over-predict 
values, to positive values where models tended to 
under-predict values. The maximum bias for any given 
data set is presented in Table 3 for a.m., MD, and p.m. 
milk samples. Models consistently under-predicted EC; 
however, both positive and negative maximum bias 
values were observed for both Direct_EB and EEI.

Figure 1. Average direct energy balance lactation profiles for cows in the high-concentrate (-�-) and low-concentrate (-□-) experimental 
feeding groups.

Table 2. Correlations between energy status component variables1 and direct energy balance (Direct_EB), energy content (EC), BCS, and 
effective energy intake (EEI) across the entire lactation and in early lactation2 

Variable

Across lactation (n = 589)3 Early lactation (n = 125)3

Direct_EB EC BCS EEI Direct_EB EC BCS EEI

Milk (kg) −0.23 0.00 −0.29 0.56 −0.12 0.44 0.01 0.70
Fat (%) 0.04 0.27 0.19 −0.05 −0.33 0.23 0.18 −0.07
Protein (%) 0.14 0.34 0.22 −0.01 −0.18 0.09 0.00 −0.01
DMI (kg) 0.61 0.34 0.04 1.00 0.56 0.36 −0.03 1.00
BCS 0.25 0.78 1.00 0.04 −0.15 0.77 1.00 −0.03
BW (kg) 0.10 0.87 0.39 0.49 −0.15 0.88 0.39 0.56
Fat-to-protein ratio −0.09 0.07 0.08 −0.06 −0.28 0.22 0.23 −0.08
1Milk components representative of p.m. milk samples.
2Early lactation = DIM <61.
3n = number of records included in the analyses using evening milk samples.
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Using smoothed MIR wavelengths in the prediction 
model did not improve the R of prediction over the R 
obtained using the unsmoothed wavelengths. Similarly, 
the use of the first derivative of the smoothed or un-

smoothed MIR wavelengths did not yield more accurate 
predictions. These results are, therefore, not presented.

Including milk yield in the prediction model increased 
the R of predicting Direct_EB by between 0.02 and 0.03 
units, whereas the R of predicting EEI increased by 
between 0.15 and 0.18 units (Table 4). For Direct_EB 
and EEI, the slope between predicted and true values 
was closer to 1 or unchanged by including milk yield 
in the model and the maximum bias for any individual 
validation data set was also closer to zero. However this 
was not always true for analyses of EC.

Accuracy of Prediction at Different  
Stages of Lactation

Table 5 summarizes the average R of predicting body 
energy status during early lactation using the MIR 
spectral data and the corresponding milk yield for the 
a.m., MD, and p.m. milk samples. In early lactation, 
fewer explanatory factors were required in the predic-
tion model to achieve maximum R. The maximum 
number of prediction factors permitted in prediction 
models was 12; however, the number of factors used by 
the models ranged from between 5 and 11.

Although, on average, prediction R at specific stages 
of lactation were lower when compared with predictions 
made across lactation, likely because of the small size of 
the data sets, the R obtained from the individual data 
sets were inconsistent. In one external validation data 
set, the R of predicting Direct_EB in early lactation 
was as high as 0.78, yet low accuracies (R = 0.51) in 
other validation data sets were also observed.

Compared with early lactation, lower prediction R 
for Direct_EB were obtained when predictions were 
undertaken in mid or late lactation (results not shown). 
In contrast, the best predictions of BCS were achieved 
in midlactation. The average R of predicting BCS in 
midlactation using MD milk samples was 0.42.

Accuracy of Prediction Across Feed Systems

A summary of the R of predicting energy status and 
EEI using prediction equations calibrated using data 
from cows on the high-concentrate diet and externally 
validated on the low-concentrate group is presented in 
Table 6. External validation yielded poor R of predic-
tion when compared with previous results where both 
concentrate groups were included in the calibration 
data set. Similarly, poor R of prediction were obtained 
when the prediction equations were developed using 
data from the low-concentrate diet and applied to the 
high-concentrate diet group (results not shown).

Figure 2. Influence of the maximum number of predictive factors 
permitted in the calibration equation on the accuracy (R) of the split-
sample cross-validation (-�-) and external validation (-Δ-) when pre-
dicting (a) direct energy balance, (b) energy content, (c) BCS, and (d) 
effective energy intake. The R of prediction was defined as the square 
root of the coefficient of determination from the regression model of 
true on predicted values of body energy status.
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Accuracy of Prediction Across Genetic Lines

The R of predicting both Direct_EB and EEI 
through either cross-validation or external validation 
was lower when the equations were developed using 
the high genetic line, compared with when equations 
were developed using the control line. The R of predict-
ing Direct_EB through external validation was 0.60 

when calibrated on the select line and validated on 
the control line of cows. However the R of predicting 
Direct_EB in the select line was 0.68 if equations were 
developed using the control line of cows. Differences in 
R between the cross-validation and external validation 
methods were similar to the differences seen between 
these validation methods when tested using all cows 
across lactation (Table 3).

Table 3. Number of records, average number of factors (Fac), root mean square error (RMSE), correlation coefficient, maximum bias (SE in 
parentheses),1 and slope (b; SE in parentheses)2 obtained from predicting direct energy balance (Direct_EB), energy content, BCS, and effective 
energy intake (EEI) using unsmoothed mid-infrared spectra, tested using split-sample cross-validation and external validation methods, across 
all data sets 

Trait n Fac

Split-sample  
cross-validation External validation

RMSE r Bias (SE) b (SE) RMSE r

a.m. milk samples
 Direct_EB (MJ/d) 1,883 20 21.06 0.72 3.18 (1.21) 0.93 (0.05) 22.18 0.68
 Energy content (MJ) 1,883 14 833.6 0.56 −330 (56) 0.77 (0.07) 876.44 0.43
 BCS 1,883 15 0.26 0.51 −0.08 (0.02) 0.69 (0.08) 0.28 0.36
 EEI (MJ) 1,883 19 29.98 0.73 −4.56 (1.58) 0.95 (0.05) 31.46 0.69
Midday milk samples
 Direct_EB (MJ/d) 1,731 19 20.96 0.71 −3.25 (1.08) 0.94 (0.05) 16.72 0.67
 Energy content (MJ) 1,731 19 784.7 0.62 −300 (44) 0.80 (0.06) 833.48 0.52
 BCS 1,731 18 0.26 0.53 −0.07 (0.01) 0.75 (0.08) 0.27 0.41
 EEI (MJ) 1,731 20 29.27 0.73 −5.19 (1.69) 0.92 (0.05) 31.23 0.68
p.m. milk samples
 Direct_EB (MJ/d) 1,855 20 19.33 0.75 −3.16 (0.96) 0.95 (0.04) 20.32 0.72
 Energy content (MJ) 1,855 20 778.3 0.63 −192 (39) 0.83 (0.06) 822.56 0.54
 BCS 1,855 19 0.25 0.53 −0.04 (0.01) 0.79 (0.08) 0.27 0.43
 EEI (MJ) 1,855 20 28.12 0.76 4.68 (1.31) 0.94 (0.04) 29.68 0.72
1Largest average difference between predicted values and true values in any external validation data set.
2Linear regression coefficient of true energy status value on predicted value.

Table 4. Average number of factors (Fac), root mean square error (RMSE), correlation coefficient, maximum bias (SE in parentheses),1 and 
slope (b; SE in parentheses)2 obtained from predicting direct energy balance (Direct_EB), energy content, BCS, and effective energy intake 
(EEI) using unsmoothed mid-infrared spectra and milk yield, tested using split-sample cross-validation and external validation methods, across 
all data sets 

Trait Fac

Split sample  
cross-validation External validation

RMSE r Bias (SE) b (SE) RMSE r

a.m. milk samples
 Direct_EB (MJ/d) 20 20.63 0.73 −2.74 (1.00) 0.94 (0.04) 21.68 0.70
 Energy content (MJ) 15 810.7 0.59 −334 (59) 0.76 (0.06) 862.7 0.46
 BCS 16 0.26 0.53 −0.09 (0.02) 0.73 (0.07) 0.27 0.39
 EEI (MJ) 20 21.97 0.86 −1.52 (1.2) 0.98 (0.03) 22.97 0.85
Midday milk samples
 Direct_EB (MJ/d) 19 15.6 0.73 −2.8 (1.04) 0.95 (0.05) 21.5 0.69
 Energy content (MJ) 16 775 0.63 −291 (44) 0.82 (0.06) 818.88 0.54
 BCS 18 0.25 0.55 −0.08 (0.01) 0.76 (0.08) 0.27 0.43
 EEI (MJ) 19 20.83 0.87 −2.95 (1.2) 0.98 (0.03) 21.95 0.86
p.m. milk samples
 Direct_EB (MJ/d) 20 18.57 0.78 −3.14 (0.90) 0.95 (0.04) 19.61 0.75
 Energy content (MJ) 19 774.2 0.63 −182 (38) 0.85 (0.06) 815.5 0.55
 BCS 19 0.25 0.56 −0.05 (0.01) 0.79 (0.07) 0.27 0.45
 EEI (MJ) 20 20.03 0.88 −3.28 (0.99) 0.98 (0.03) 21.05 0.87
1Largest average difference between predicted values and true values in any external validation data set.
2Linear regression coefficient of true energy status value on predicted value.
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DISCUSSION

The objective of this study was to predict body en-
ergy status of lactating Holstein cows using routinely 
available milk MIR spectral data. Accurate, routine, 
and freely available information on body energy sta-
tus of individual cows would be useful for farmers as a 
management aid to identify cows with a greater likeli-
hood of succumbing to health and wellbeing problems 

but would also provide useful information for inclusion 
in genetic evaluations. However, true energy balance is 
an expensive trait to accurately measure, and to date, 
proposed methods of predicting energy balance are sub-
optimal because high R of prediction is not consistently 
achievable across studies, particularly at an individual 
animal level (Reist et al., 2002; Friggens et al., 2007). 
Because traits derived from milk components, such as 
fat-to-protein ratio and milk fatty acid composition, 

Table 5. Number of records, average number of factors (Fac), root mean square error (RMSE), correlation coefficient, maximum bias (SE in 
parentheses),1 and slope (b; SE in parentheses)2 obtained from predicting direct energy balance (Direct_EB), energy content, BCS, and effective 
energy intake (EEI) in early lactation (DIM <61) using unsmoothed mid-infrared spectra and milk yield, tested using split-sample cross-
validation and external validation methods, across all data sets 

Trait n Fac

Split-sample  
cross-validation External validation

RMSE r Bias (SE) b (SE) RMSE r

a.m. milk samples
 Direct_EB (MJ/d) 387 11 23.31 0.71 7.56 (2.48) 0.78 (0.11) 26.53 0.59
 Energy content (MJ) 387 6 716.1 0.62 −313 (60) 0.93 (0.13) 702.82 0.59
 BCS 387 8 11.82 0.25 −3.32 (2.39) 0.56 (0.19) 12.57 0.18
 EEI (MJ) 387 10 168.6 0.83 6.73 (2.37) 0.88 (0.10) 259.77 0.71
Midday milk samples
 Direct_EB (MJ/d) 353 11 21.77 0.75 7.81 (2.50) 0.88 (0.11) 18.01 0.65
 Energy content (MJ) 353 9 694.1 0.64 −290 (65) 0.87 (0.13) 699.28 0.59
 BCS 353 5 0.24 0.41 −0.08 (0.03) 0.59 (0.26) 0.25 0.25
 EEI (MJ) 353 11 21.21 0.88 −9.99 (2.72) 0.92 (0.07) 23.78 0.83
p.m. milk samples
 Direct_EB (MJ/d) 384 11 21.08 0.76 3.98 (2.11) 0.84 (0.09) 23.43 0.69
 Energy content (MJ) 384 6 700.3 0.63 −223 (59) 0.90 (0.13) 702.37 0.58
 BCS 384 7 5.12 0.47 −0.04 (0.02) 0.58 (0.20) 5.42 0.39
 EEI (MJ) 384 9 164.8 0.83 −5.01 (2.74) 0.93 (0.09) 249.84 0.76
1Largest average difference between predicted values and true values in any external validation data set.
2Linear regression coefficient of true energy status value on predicted value.

Table 6. Number of factors (Fac), root mean square error (RMSE), correlation coefficient, mean bias (SE in parentheses),1 and slope (b; SE in 
parentheses)2 obtained from predicting direct energy balance (Direct_EB), energy content, BCS, and effective energy intake (EEI) of cows on 
a low-concentrate diet using a prediction equation calibrated from cows on a high-concentration diet, tested using split-sample cross-validation 
and external validation methods 

Trait Fac

Split-sample  
cross-validation External validation

RMSE r Bias (SE) b (SE) RMSE r

a.m. milk samples
 Direct_EB (MJ/d) 17 15.10 0.76 −23.19 (1.10) 0.70 (0.06) 33.19 0.35
 Energy content (MJ) 13 843.32 0.53 −467 (29) 0.67 (0.05) 857.70 0.40
 BCS 13 0.25 0.58 −0.27 (0.01) 0.49 (0.05) 0.26 0.31
 EEI (MJ) 16 18.49 0.81 −23.50 (1.14) 1.05 (0.05) 34.86 0.58
Midday milk samples
 Direct_EB (MJ/d) 16 14.94 0.76 −23.16 (1.18) 0.56 (0.08) 34.11 0.22
 Energy content (MJ) 19 782.45 0.62 −376 (29) 0.69 (0.05) 825.99 0.44
 BCS 10 0.26 0.55 −0.30 (0.01) 0.59 (0.06) 0.26 0.34
 EEI (MJ) 18 17.04 0.84 −21.35 (1.05) 1.19 (0.04) 30.28 0.68
p.m. milk samples
 Direct_EB (MJ/d) 19 14.80 0.78 −16.95 (0.94) 1.12 (0.06) 28.60 0.54
 Energy content (MJ) 20 799.83 0.60 −224 (28) 0.71 (0.05) 832.02 0.44
 BCS 10 0.26 0.52 −0.28 (0.01) 0.50 (0.05) 0.26 0.30
 EEI (MJ) 19 17.82 0.83 −13.59 (0.95) 1.22 (0.04) 28.27 0.74
1Average difference between predicted values and true values in the external validation data set.
2Linear regression coefficient of true energy status value on predicted value.
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are all predicted from MIR spectral data and have 
been proposed to be related to energy balance (Reist 
et al., 2002; Friggens et al., 2007), the hypothesis for 
this study was that MIR spectral data in its own right 
would be useful as a predictor of body energy status.

Development of Prediction Equations

An important consideration in the development of 
a prediction model is the number of explanatory fac-
tors permitted in the model. If too few explanatory 
variables are included, the resulting model is over-
simplified and unable to predict with enough R, es-
pecially in an independent data set. In contrast, if too 
many explanatory factors are included, the model is 
potentially over-parameterized to its calibration data 
set and is also unable to achieve high R of prediction in 
an external data set. The external validation procedure 
is based on testing the R in an independent data set; 
thus, results from external validation represent a truer 
reflection of the R of the prediction equations than the 
R reported from split-sample cross-validation. For this 
reason, the effect of increasing the number of prediction 
factors permissible in the model was tested on both the 
split-sample cross-validation and external validation 
R (Figure 2). It is clear that, as the number of fac-
tors permissible in the model increased, the R of both 
validation procedures increased, yet at some point (20 
explanatory factors), the R of the external validation 
began to decrease. This is likely due to over-parameter-
ization of the model, thereby possibly modeling some 
inherent error in the calibration database. The error 
may improve the R of the equation in the calibration 
data set, yet could decrease the R of the equation on 
independent data (i.e., external validation data set). 
Therefore, a maximum of 20 factors was chosen for 
the majority of prediction models in this study. For 
prediction models developed during early lactation, a 
maximum of 12 explanatory factors was chosen. These 
numbers of explanatory factors are in the range of those 
reported by other studies; Soyeurt et al. (2011) set the 
maximum number of factors in their prediction model 
for milk fatty acid equal to 16.

The lack of improvement in R from pretreatment of 
the spectral data, such as smoothing or using the rate 
of change across the MIR data wavelengths, is contrary 
to previous work published (Soyeurt et al., 2011) when 
attempting to predict milk fatty acid composition from 
spectral data. The first derivative of the smoothed 
spectral data accentuates large deviations in spectral 
values from one wavelength to the next. Using the first 
derivative of MIR spectral data, Soyeurt et al. (2011) 
reported a slight improvement in prediction of some 
milk fatty acids. The largest improvement reported was 

an increase in coefficient of determination value from 
0.80 to 0.84 for C18:1 trans. Pre-treatment of spectral 
data also resulted in poorer predictions for some fatty 
acids (Soyeurt et al., 2011). However, unlike the study 
of Soyeurt et al. (2011), the results presented here used 
MIR data collected from a single spectrometer, and all 
MIR spectral data were collected in a relatively short 
time period, under 2 yr.

External validations of the prediction of body energy 
status when the calibration data set did not represent 
or imitate the validation data set were poor (Table 6). 
The prediction equations calibrated using data from the 
high-concentrate experimental group only was unable 
to predict body energy status in the low-concentrate 
experimental group and vice versa, despite achieving 
high R with split-sample cross-validation. However, as 
seen in Figure 1, the 2 feeding groups had very different 
average Direct_EB lactation profiles with little overlap 
observed. Accurate predictions can only be obtained for 
cows when actual phenotypic data on animals in similar 
production systems with similar energy balance profiles 
have been quantified and included in the calibration of 
the prediction equations. This limits the applicability 
of the prediction equations across different production 
systems, unless phenotypic records representative of 
those systems are included in the calibration of predic-
tion models.

Prediction of Body Energy Status and Energy Intake

The greatest R of predicting energy status in the 
external validation data set in this study was 0.75, 
obtained when predicting Direct_EB using p.m. milk 
samples across lactation (Table 4). However, by defini-
tion, Direct_EB is a noisy phenotype, as it incorpo-
rates several phenotypes each with their own individual 
measurement error; random variation could also have 
been introduced through the modeling of the individual 
components during lactation for the subsequent calcu-
lation of Direct_EB. The same is true of EC, but to a 
lesser extent, although BCS is subjectively measured 
and BW can vary considerably with gut fill; an attempt 
was made in the present study to account for differ-
ences in gut fill in the modeling of EC. Furthermore, 
diurnal variation in body energy status traits or energy 
intake may also exist. This was reflected in the different 
milkings during the day but would not be evident when 
these traits were expressed on an average daily basis. 
This could be one contributing factor to the differences 
in R observed, depending on which of the milkings dur-
ing the day was under investigation. Very high R were, 
therefore, not expected in the prediction of Direct_EB 
or EC itself. However, it was not possible to ascertain 
whether the energy status traits to be predicted are a 
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closer reflection of the true energy status of the animal 
than predictions from the MIR spectral data.

Across all prediction models presented in this study, 
Direct_EB was the energy status measure that was 
consistently most accurately predicted. This is not 
unexpected because milk fat, protein, and lactose, all 
predicted from MIR spectra, are directly used in the 
estimation of Direct_EB and, therefore, a statistical 
part-whole relationship exists between the predictors 
and the predictand. Furthermore, the improvement in 
predictions with the inclusion of milk yield in the model 
was not unexpected, for Direct_EB at least, again be-
cause of the statistical part-whole relationship. How-
ever, a biological relationship also exists because milk 
energy output is a key component of a cow’s actual 
energy status. Nevertheless, the greatest improvement 
in R from including milk yield in the prediction model 
was observed in the prediction of EEI, although milk 
yield was not involved in the calculation of EEI. Both 
milk yield and EEI were strongly correlated, especially 
in early lactation, where the correlation between the 
2 traits was 0.70 (Table 2). If the use of milk MIR 
spectra to predict body energy status is implemented in 
milk-recording schemes, milk yield for each sample will 
also be available and it is, therefore, sensible to use all 
available data that add information to the prediction.

The motivation for this study was to evaluate the 
potential of MIR spectral data to improve the predic-
tion of body energy status over and above previously 
suggested approaches of fat-to-protein ratio (Heuer et 
al., 2000; Friggens et al., 2007; Buttchereit et al., 2010) 
and milk acetone concentration (Clark et al. 2005). 
The biological rationale behind this hypothesized asso-
ciation is that body fat mobilization occurring when a 
cow is in negative energy balance leads to an increased 
uptake of the resulting fatty acids and, subsequently, 
increased fat synthesis in the udder. Concomitantly de-
creased intake of fermentable carbohydrates decreases 
the synthesis of protein by the bacteria in the rumen, 
thereby decreasing the flow of AA to the udder and, 
thus, decreasing protein synthesis. Grieve et al. (1986) 
reported correlations of −0.74 to −0.36 between fat-
to-protein ratio and energy balance in 236 cows dur-
ing their second or third month of lactation. Similarly, 
Reist et al. (2002) documented a correlation of −0.50 
between fat-to-protein ratio and energy balance in the 
first 11 wk of lactation in 90 multiparous Holsteins. 
These associations are considerably stronger than the 
associations obtained for predicting Direct_EB using 
fat-to-protein ratio in this study. Correlations between 
fat-to-protein ratio and Direct_EB obtained in this 
study were −0.09 and −0.28 across lactation and in 
early lactation, respectively. However, other studies 
also exist, which indicate weak associations between 

fat-to-protein ratio and energy balance like that ob-
served in this study (Clark et al., 2005); Heuer et al. 
(2000) reported an increase in the proportion of vari-
ance in energy balance explained by fat-to-protein ratio 
of only 5.6 percentage units when week of lactation, 
parity, and milk yield were already adjusted for in wk 2 
to 12 of lactation. Furthermore, few other studies have 
attempted to predict energy balance throughout lacta-
tion from milk composition, instead focusing on energy 
balance in early lactation. This is likely because of the 
known association between negative energy balance in 
early lactation and subsequent reproductive perfor-
mance (Butler and Smith, 1989). However, Buttchereit 
et al. (2010) reported a stronger correlation between 
fat-to-protein ratio and energy balance in early lacta-
tion (<0.60 DIM) of −0.43 to −0.28 compared with 
later lactation (−0.28 to −0.13).

Using partial least squares regression and split-sam-
ple cross-validation, Friggens et al. (2007) attempted 
to predict energy balance and energy content, similar 
to those defined in the present study, with a series of 
variables derived from milk yield and milk composition, 
including number of days since calving. They reported 
that 39% of the variation in their definition of energy 
content (which they referred to as EBal) could be ex-
plained by a model that contained days postcalving, 
milk fat content, fat-to-protein ratio, as well as the 
first derivatives of daily milk yield, fat-to-protein ratio 
and lactose yield; the same model explained 50% of the 
variation in their definition of energy balance (which 
they referred to as EBinout). Slightly better R of pre-
dicting Direct_EB and EC were generally observed in 
the present study across lactation, in the model that 
also included milk yield, suggesting that the prediction 
equations developed in the present study are exploiting 
information from the MIR spectra over and above their 
association with the major components of milk such as 
fat, protein, and lactose.

CONCLUSIONS

This study offers a method to cheaply and accurately 
predict body energy status of cows using routine milk 
recording. Although R of prediction are greater than 
previously reported for predictions of energy status in 
individual cows, the prediction equations were not ro-
bust across feeding systems that were not represented 
in the data set used to generate the equations. Further 
research will need to be undertaken to evaluate whether 
the measures of energy status predicted in the present 
study are heritable and more strongly correlated with 
subsequent health and fertility than previously evalu-
ated measures of energy status.
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