17 research outputs found

    A unified multiwavelength model of galaxy formation

    Get PDF
    We present a new version of the GALFORM semi-analytical model of galaxy formation. This brings together several previous developments of GALFORM into a single unified model, including a different initial mass function (IMF) in quiescent star formation and in starbursts, feedback from active galactic nuclei supressing gas cooling in massive halos, and a new empirical star formation law in galaxy disks based on their molecular gas content. In addition, we have updated the cosmology, introduced a more accurate treatment of dynamical friction acting on satellite galaxies, and updated the stellar population model. The new model is able to simultaneously explain both the observed evolution of the K-band luminosity function and stellar mass function, and the number counts and redshift distribution of sub-mm galaxies selected at 850μm. This was not previously achieved by a single physical model within the ΛCDM framework, but requires having an IMF in starbursts that is somewhat top-heavy. The new model is tested against a wide variety of observational data covering wavelengths from the far-UV to sub-mm, and redshifts from z = 0 to z = 6, and is found to be generally successful. These observations include the optical and near-IR luminosity functions, HI mass function, fraction of early type galaxies, Tully-Fisher, metallicity-luminosity and size-luminosity relations at z = 0, as well as far-IR number counts, and far-UV luminosity functions at z ∼ 3 − 6. Discrepancies are however found in galaxy sizes and metallicities at low luminosities, and in the abundance of low mass galaxies at high-z, suggesting the need for a more sophisticated model of supernova feedback

    Understanding pore formation and the effect on mechanical properties of high speed sintered polyamide-12 parts: A focus on energy input

    Get PDF
    High Speed Sintering is a novel powder-bed fusion Additive Manufacturing technique that uses an infrared lamp to provide intensive thermal energy to sinter polymer powders. The amount of thermal energy is critical to particle coalescence related defects such as porosity. This study investigates the effect of energy input on porosity and the resulting mechanical properties of polyamide-12 parts. Samples were produced at different lamp speeds, generating varying amount of energy input from a low to a high level. They were then scanned using X-ray Computed Tomography technique, following which they were subject to tensile testing. A strong correlation between energy input, porosity and mechanical properties was found, whereby pore formation was fundamentally caused by insufficient energy input. A greater amount of energy input resulted in a reduced porosity level, which in turn led to improved mechanical properties. The porosity, ultimate tensile strength and elongation achieved were 0.58%, 42.4 MPa and 10.0%, respectively, by using the standard parameters. Further increasing the energy input resulted in the lowest porosity of 0.14% and the highest ultimate tensile strength and elongation of 44.4 MPa and 13.5%, respectively. Pore morphology, volume, number density and spatial distribution were investigated, which were found to be closely linked with energy input and mechanical properties

    Comparability of automated drusen volume measurements in age-related macular degeneration: a MACUSTAR study report

    Get PDF
    Drusen are hallmarks of early and intermediate age-related macular degeneration (AMD) but their quantification remains a challenge. We compared automated drusen volume measurements between different OCT devices. We included 380 eyes from 200 individuals with bilateral intermediate (iAMD, n = 126), early (eAMD, n = 25) or no AMD (n = 49) from the MACUSTAR study. We assessed OCT scans from Cirrus (200 × 200 macular cube, 6 × 6 mm; Zeiss Meditec, CA) and Spectralis (20° × 20°, 25 B-scans; 30° × 25°, 241 B-scans; Heidelberg Engineering, Germany) devices. Sensitivity and specificity for drusen detection and differences between modalities were assessed with intra-class correlation coefficients (ICCs) and mean difference in a 5 mm diameter fovea-centered circle. Specificity was > 90% in the three modalities. In eAMD, we observed highest sensitivity in the denser Spectralis scan (68.1). The two different Spectralis modalities showed a significantly higher agreement in quantifying drusen volume in iAMD (ICC 0.993 [0.991–0.994]) than the dense Spectralis with Cirrus scan (ICC 0.807 [0.757–0.847]). Formulae for drusen volume conversion in iAMD between the two devices are provided. Automated drusen volume measures are not interchangeable between devices and softwares and need to be interpreted with the used imaging devices and software in mind. Accounting for systematic difference between methods increases comparability and conversion formulae are provided. Less dense scans did not affect drusen volume measurements in iAMD but decreased sensitivity for medium drusen in eAMD

    Ventilator-associated lung Injury

    No full text
    Since its introduction into clinical practice as life-sustaining therapy in the polio epidemic, mechanical ventilation has proved to be an important tool for the treatment of the respiratory failure. One of the main reasons for a patient's admission into the intensive care unit (ICU) is to receive ventilator support [1]. According to a recent review by Esteban and co-workers [2], 66% of patients who require mechanical ventilation suffer from acute respiratory failure, including acute respiratory distress syndrome (ARDS), heart failure, pneumonia, sepsis, complications of surgery and trauma. The remaining indications include coma (15%), acute exacerbation of chronic obstructive pulmonary disease (13%) and neuromuscular disorders (5%). The aims of mechanical ventilation are primarily to decrease the work of breathing and to reverse life-threatening hypoxaemia or acute progressive respiratory acidosis. However, over the last two decades, research in a number of animal models has shown that mechanical ventilation itself can produce acute lung injury (ALI) [3]. The classical form of iatrogenic lung injury, recognised clinically for many decades, is the well-known barotrauma, defined as radiological evidence of extra-alveolar air [4]. The extraalveolar accumulation of air has several manifestations, of which the most threatening is tension pneumothorax. \ua9 2008 Springer-Verlag Italia

    Extinction vulnerability in marine populations

    No full text
    Human impacts on the world's oceans have been substantial, leading to concerns about the extinction of marine taxa. We have compiled 133 local, regional and global extinctions of marine populations. There is typically a 53-year lag between the last sighting of an organism and the reported date of the extinction at whatever scale this has occurred. Most disappearances (80%) were detected using indirect historical comparative methods, which suggests that marine extinctions may have been underestimated because of low-detection power. Exploitation caused most marine losses at various scales (55%), followed closely by habitat loss (37%), while the remainder were linked to invasive species, climate change, pollution and disease. Several perceptions concerning the vulnerability of marine organisms appear to be too general and insufficiently conservative. Marine species cannot be considered less vulnerable on the basis of biological attributes such as high fecundity or large-scale dispersal characteristics. For commercially exploited species, it is often argued that economic extinction of exploited populations will occur before biological extinction, but this is not the case for non-target species caught in multispecies fisheries or species with high commercial value, especially if this value increases as species become rare. The perceived high potential for recovery, high variability and low extinction vulnerability of fish populations have been invoked to avoid listing commercial species of fishes under international threat criteria. However, we need to learn more about recovery, which may be hampered by negative population growth at small population sizes (Allee effect or depensation) or ecosystem shifts, as well as about spatial dynamics and connectivity of subpopulations before we can truly understand the nature of responses to severe depletions. The evidence suggests that fish populations do not fluctuate more than those of mammals, birds and butterflies, and that fishes may exhibit vulnerability similar to mammals, birds and butterflies. There is an urgent need for improved methods of detecting marine extinctions at various spatial scales, and for predicting the vulnerability of species

    Early (Stage A) prostatic cancer

    No full text
    corecore