1,835 research outputs found
Evaluation of estuarine biotic indices to assess macro-benthic structure and functioning following nutrient remediation actions: A case study on the Eden estuary Scotland
© 2018 Despite a wealth of methods currently proposed by the European Water Framework Directive (WFD) to assess macro-benthic integrity, determining good ecological status (GES) and assessing ecosystem recovery following anthropogenic degradation is still one of the biggest challenges in marine ecology research. In this study, our aim was to test a number of commonly used structural (e.g. Shannon–Wiener, Average Taxonomic Diversity ([Formula presented]), M-AMBI) and functional indicators (e.g. BTA, BPc) currently used in benthic research and monitoring programmes on the Eden estuary (Scotland). Historically the estuary has a legacy of high nutrient conditions and was designated as a Nitrate Vulnerable Zone (NVZ) in 2003, whence major management measures were implemented in order to ameliorate the risk of eutrophication symptoms. We therefore collected data on intertidal macro-benthic communities over a sixteen year interval, covering a pre-management (1999) and post-management (2015) period to assess the effectiveness of the intended restoration efforts. In the post-management period, the results suggested an improvement in the structure and functioning of the estuary as a whole, but macro-benthic assemblages responded to restoration variably along the estuarine gradient. The greatest improvements were noticed in the upper and central sites of the estuary with functional traits analysis suggesting an increased ability of these sites to provide ecosystem services associated with the benthic environment such as carbon and organic matter cycling. Generally, almost all of the structural and functional indicators detected the prevailing environmental conditions (with the exception of (Pielou's index and Average Taxonomic Diversity ([Formula presented])), highlighting the appropriateness of such methods to be used in monitoring the recovery of transitional systems. This research also provides a robust baseline to monitor further management actions in the Eden estuary and provides evidence that notable reductions in nitrate concentrations resulting from NVZ designations may result in significant improvements to benthic structure and functioning
New Finite Rogers-Ramanujan Identities
We present two general finite extensions for each of the two Rogers-Ramanujan
identities. Of these one can be derived directly from Watson's transformation
formula by specialization or through Bailey's method, the second similar
formula can be proved either by using the first formula and the q-Gosper
algorithm, or through the so-called Bailey lattice.Comment: 19 pages. to appear in Ramanujan
Emotional engagements predict and enhance social cognition in young chimpanzees
Social cognition in infancy is evident in coordinated triadic engagements, that is, infants attending jointly with social partners and objects. Current evolutionary theories of primate social cognition tend to highlight species differences in cognition based on human-unique cooperative motives. We consider a developmental model in which engagement experiences produce differential outcomes. We conducted a 10-year-long study in which two groups of laboratory-raised chimpanzee infants were given quantifiably different engagement experiences. Joint attention, cooperativeness, affect, and different levels of cognition were measured in 5- to 12-month-old chimpanzees, and compared to outcomes derived from a normative human database. We found that joint attention skills significantly improved across development for all infants, but by 12 months, the humans significantly surpassed the chimpanzees. We found that cooperativeness was stable in the humans, but by 12 months, the chimpanzee group given enriched engagement experiences significantly surpassed the humans. Past engagement experiences and concurrent affect were significant unique predictors of both joint attention and cooperativeness in 5- to 12-month-old chimpanzees. When engagement experiences and concurrent affect were statistically controlled, joint attention and cooperation were not associated. We explain differential social cognition outcomes in terms of the significant influences of previous engagement experiences and affect, in addition to cognition. Our study highlights developmental processes that underpin the emergence of social cognition in support of evolutionary continuity
Unscreened Hartree-Fock calculations for metallic Fe, Co, Ni, and Cu from ab-initio Hamiltonians
Unscreened Hartree-Fock approximation (HFA) calculations for metallic Fe, Co,
Ni, and Cu are presented, by using a quantum-chemical approach. We believe that
these are the first HFA results to have been done for crystalline 3d transition
metals. Our approach uses a linearized muffin-tin orbital calculation to
determine Bloch functions for the Hartree one-particle Hamiltonian, and from
these obtains maximally localized Wannier functions, using a method proposed by
Marzari and Vanderbilt. Within this Wannier basis all relevant one-particle and
two-particle Coulomb matrix elements are calculated. The resulting
second-quantized multi-band Hamiltonian with ab-initio parameters is studied
within the simplest many-body approximation, namely the unscreened,
self-consistent HFA, which takes into account exact exchange and is free of
self-interactions. Although the d-bands sit considerably lower within HFA than
within the local (spin) density approximation L(S)DA, the exchange splitting
and magnetic moments for ferromagnetic Fe, Co, and Ni are only slightly larger
in HFA than what is obtained either experimentally or within LSDA. The HFA
total energies are lower than the corresponding LSDA calculations. We believe
that this same approach can be easily extended to include more sophisticated
ab-initio many-body treatments of the electronic structure of solids.Comment: 11 papes, 7 figures, 5 table
Updated tests of scaling and universality for the spin-spin correlations in the 2D and 3D spin-S Ising models using high-temperature expansions
We have extended, from order 12 through order 25, the high-temperature series
expansions (in zero magnetic field) for the spin-spin correlations of the
spin-S Ising models on the square, simple-cubic and body-centered-cubic
lattices. On the basis of this large set of data, we confirm accurately the
validity of the scaling and universality hypotheses by resuming several tests
which involve the correlation function, its moments and the exponential or the
second-moment correlation-lengths.Comment: 21 pages, 8 figure
Atl1 Regulates Choice between Global Genome and Transcription-Coupled Repair of O6-Alkylguanines
Nucleotide excision repair (NER) has long been known to remove DNA lesions induced by chemical carcinogens, and the molecular mechanism has been partially elucidated. Here we demonstrate that in Schizosaccharomyces pombe a DNA recognition protein, alkyltransferase-like 1 (Atl1), can play a pivotal role in selecting a specific NER pathway, depending on the nature of the DNA modification. The relative ease of dissociation of Atl1 from DNA containing small O6-alkylguanines allows accurate completion of global genome repair (GGR), whereas strong Atl1 binding to bulky O6-alkylguanines blocks GGR, stalls the transcription machinery, and diverts the damage to transcription-coupled repair. Our findings redraw the initial stages of the NER process in those organisms that express an alkyltransferase-like gene and raise the question of whether or not O6-alkylguanine lesions that are poor substrates for the alkyltransferase proteins in higher eukaryotes might, by analogy, signal such lesions for repair by NER
Habitable Zones of Host Stars During the Post-MS Phase
A star will become brighter and brighter with stellar evolution, and the
distance of its habitable zone will become farther and farther. Some planets
outside the habitable zone of a host star during the main sequence phase may
enter the habitable zone of the host star during other evolutionary phases. A
terrestrial planet within the habitable zone of its host star is generally
thought to be suited to life existence. Furthermore, a rocky moon around a
giant planet may be also suited to life survive, provided that the planet-moon
system is within the habitable zone of its host star. Using Eggleton's code and
the boundary flux of habitable zone, we calculate the habitable zone of our
Solar after the main sequence phase. It is found that Mars' orbit and Jupiter's
orbit will enter the habitable zone of Solar during the subgiant branch phase
and the red giant branch phase, respectively. And the orbit of Saturn will
enter the habitable zone of Solar during the He-burning phase for about 137
million years. Life is unlikely at any time on Saturn, as it is a giant gaseous
planet. However, Titan, the rocky moon of Saturn, may be suitable for
biological evolution and become another Earth during that time. For low-mass
stars, there are similar habitable zones during the He-burning phase as our
Solar, because there are similar core masses and luminosities for these stars
during that phase.Comment: 6 pages, 7 figures. Accepted by Ap & S
Pinch Technique and the Batalin-Vilkovisky formalism
In this paper we take the first step towards a non-diagrammatic formulation
of the Pinch Technique. In particular we proceed into a systematic
identification of the parts of the one-loop and two-loop Feynman diagrams that
are exchanged during the pinching process in terms of unphysical ghost Green's
functions; the latter appear in the standard Slavnov-Taylor identity satisfied
by the tree-level and one-loop three-gluon vertex. This identification allows
for the consistent generalization of the intrinsic pinch technique to two
loops, through the collective treatment of entire sets of diagrams, instead of
the laborious algebraic manipulation of individual graphs, and sets up the
stage for the generalization of the method to all orders. We show that the task
of comparing the effective Green's functions obtained by the Pinch Technique
with those computed in the background field method Feynman gauge is
significantly facilitated when employing the powerful quantization framework of
Batalin and Vilkovisky. This formalism allows for the derivation of a set of
useful non-linear identities, which express the Background Field Method Green's
functions in terms of the conventional (quantum) ones and auxiliary Green's
functions involving the background source and the gluonic anti-field; these
latter Green's functions are subsequently related by means of a Schwinger-Dyson
type of equation to the ghost Green's functions appearing in the aforementioned
Slavnov-Taylor identity.Comment: 45 pages, uses axodraw; typos corrected, one figure changed, final
version to appear in Phys.Rev.
Gauge and Scheme Dependence of Mixing Matrix Renormalization
We revisit the issue of mixing matrix renormalization in theories that
include Dirac or Majorana fermions. We show how a gauge-variant on-shell
renormalized mixing matrix can be related to a manifestly gauge-independent one
within a generalized scheme of renormalization. This
scheme-dependent relation is a consequence of the fact that in any scheme of
renormalization, the gauge-dependent part of the mixing-matrix counterterm is
ultra-violet safe and has a pure dispersive form. Employing the unitarity
properties of the theory, we can successfully utilize the afore-mentioned
scheme-dependent relation to preserve basic global or local symmetries of the
bare Lagrangian through the entire process of renormalization. As an immediate
application of our study, we derive the gauge-independent renormalization-group
equations of mixing matrices in a minimal extension of the Standard Model with
isosinglet neutrinos.Comment: 31 pages, LaTeX, uses axodraw.st
Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics
Very-high energy (VHE) gamma quanta contribute only a minuscule fraction -
below one per million - to the flux of cosmic rays. Nevertheless, being neutral
particles they are currently the best "messengers" of processes from the
relativistic/ultra-relativistic Universe because they can be extrapolated back
to their origin. The window of VHE gamma rays was opened only in 1989 by the
Whipple collaboration, reporting the observation of TeV gamma rays from the
Crab nebula. After a slow start, this new field of research is now rapidly
expanding with the discovery of more than 150 VHE gamma-ray emitting sources.
Progress is intimately related with the steady improvement of detectors and
rapidly increasing computing power. We give an overview of the early attempts
before and around 1989 and the progress after the pioneering work of the
Whipple collaboration. The main focus of this article is on the development of
experimental techniques for Earth-bound gamma-ray detectors; consequently, more
emphasis is given to those experiments that made an initial breakthrough rather
than to the successors which often had and have a similar (sometimes even
higher) scientific output as the pioneering experiments. The considered energy
threshold is about 30 GeV. At lower energies, observations can presently only
be performed with balloon or satellite-borne detectors. Irrespective of the
stormy experimental progress, the success story could not have been called a
success story without a broad scientific output. Therefore we conclude this
article with a summary of the scientific rationales and main results achieved
over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic
rays, gamma rays and neutrinos: A survey of 100 years of research
- …
