696 research outputs found

    On the use of controlled radiation pressure to send a satellite to a graveyard orbit

    Get PDF
    A very important topic in modern astrodynamics is the removal of satellites from their orbits, after the end of their missions. In this work, we propose the use of the solar radiation pressure to change the orbital energy of a satellite, to remove it from the operational region to a graveyard orbit. A mechanism for changing the area-to-mass ratio of the satellite and/or its reflectivity coefficient is used to accomplish this task. We derive an analytical model to find the maximum eccen- tricity achieved during the removal trajectory, for different initial conditions for the argument of perigee and the longitude of the ascending node. After that, the best trajectories, i.e., trajectories with low eccentricity, are integrated using a numerical model. These low eccentricity trajectories are important because satellites with disposal orbits with low eccentricity pose a lower risk of crossing the operational region during the de-orbiting.Un tema importante en la astrodinámica moderna es la remoción de satélites de sus órbitas al finalizar sus misiones. En este trabajo proponemos utilizar la presión de la radiación solar para modificar la energía orbital del satélite, y así alejarlo de la región operacional y enviarlo a una órbita “en el cementerio”. Para este propósito, se propone un mecanismo para cambiar la razón área-masa y/o la reflectividad del satélite. Obtenemos un modelo analítico para encontrar la máxima excentricidad alcanzada durante la trayectoria de remoción, para diferentes valores iniciales del argumento del perigeo y de la longitud del nodo ascendente. A continuación, las mejores trayectorias, esto es, las de menor excenticidad, se integran numéricamente. Estas trayectorias de baja excentricidad son importantes pues los satélites con ´orbitas de desecho de baja excentricidad tienen un menor riesgo de cruzar las regiones operacionales durante su eliminación.The author is thankful for the grants # 406841/2016-0 and 301338/2016-7 from the National Council for Scientific and Technological Development (CNPq); and grants # 2014/22295-5, 2011/08171-3, 2016/14665-2 and 2016/07248-6 from São Paulo Research Foundation (FAPESP).info:eu-repo/semantics/publishedVersio

    Suppression of static stripe formation by next-neighbor hopping

    Full text link
    We show from real-space Hartree-Fock calculations within the extended Hubbard model that next-nearest neighbor (t') hopping processes act to suppress the formation of static charge stripes. This result is confirmed by investigating the evolution of charge-inhomogeneous corral and stripe phases with increasing t' of both signs. We propose that large t' values in YBCO prevent static stripe formation, while anomalously small t' in LSCO provides an additional reason for the appearance of static stripes only in these systems.Comment: 4 pages, 5 figure

    A new staggered algorithm for thermomechanical coupled problems

    Get PDF
    This study presents a new staggered coupled strategy to deal with thermomechanical problems. The proposed strategy is based on the isothermal split methodology, i.e. the mechanical problem is solved at constant temperature and the thermal problem is solved for a fixed configuration. Nevertheless, the procedure for this strategy is divided into two phases within each increment: the prediction and the correction phases, while the interchange of information is performed on both. This allows taking advantage of automatic time-step control techniques, previously implemented for the mechanical problem, which is the main feature that distinguishes it from the classical strategies. The aim of the proposed strategy is to reduce the computational cost without compromising the accuracy of the results. The new coupling strategy is validated using three numerical examples, comparing its accuracy and performance with the ones obtained with the classical (commonly employed) strategies for solving thermomechanical problems. Moreover, the influence of the time-step size on the accuracy is analysed. The results indicate that the proposed strategy presents accuracy close to the one obtained with the implicit coupling algorithm, while the computational cost is only slightly higher than the one required by the explicit strategy. (C) 2017 Elsevier Ltd. All rights reserved.The authors gratefully acknowledge the financial support of the Portuguese Foundation for Science and Technology (FCT) under projects P2020-PTDC/EMS-TEC/0702/2014 (POCI-01-0145-FEDER-016779) and P2020-PTDC/EMS-TEC/6400/2014 (POCI-01-0145-FEDER-016876) by UE/FEDER through the program COMPETE 2020. The second author is also grateful to the FCT for the Postdoctoral grant SFRH/BPD/101334/2014.info:eu-repo/semantics/publishedVersio

    Effect of Holstein phonons on the optical conductivity of gapped graphene

    Full text link
    We study the optical conductivity of a doped graphene when a sublattice symmetry breaking is occurred in the presence of the electron-phonon interaction. Our study is based on the Kubo formula that is established upon the retarded self-energy. We report new features of both the real and imaginary parts of the quasiparticle self-energy in the presence of a gap opening. We find an analytical expression for the renormalized Fermi velocity of massive Dirac Fermions over broad ranges of electron densities, gap values and the electron-phonon coupling constants. Finally we conclude that the inclusion of the renormalized Fermi energy and the band gap effects are indeed crucial to get reasonable feature for the optical conductivity.Comment: 12 pages, 4 figures. To appear in Eur. Phys. J.

    Interlayer hopping properties of electrons in layered metals

    Full text link
    A formalism is proposed to study the electron tunneling between extended states, based on the spin-boson Hamiltonian previously used in two-level systems. It is applied to analyze the out--of--plane tunneling in layered metals considering different models. By studying the effects of in--plane interactions on the interlayer tunneling of electrons near the Fermi level, we establish the relation between departure from Fermi liquid behavior driven by electron correlations inside the layer and the out of plane coherence. Response functions, directly comparable with experimental data are obtained

    X-boson cumulant approach to the periodic Anderson model

    Full text link
    The Periodic Anderson Model (PAM) can be studied in the infinite U limit by employing the Hubbard X operators to project out the unwanted states. We have already studied this problem employing the cumulant expansion with the hybridization as perturbation, but the probability conservation of the local states (completeness) is not usually satisfied when partial expansions like the Chain Approximation (CHA) are employed. Here we treat the problem by a technique inspired in the mean field approximation of Coleman's slave-bosons method, and we obtain a description that avoids the unwanted phase transition that appears in the mean-field slave-boson method both when the chemical potential is greater than the localized level Ef at low temperatures (T) and for all parameters at intermediate T.Comment: Submited to Physical Review B 14 pages, 17 eps figures inserted in the tex

    Living with Ghosts and their Radiative Corrections

    Get PDF
    The role of higher derivative operators in 4D effective field theories is discussed in both non-supersymmetric and supersymmetric contexts. The approach, formulated in the Minkowski space-time, shows that theories with higher derivative operators do not always have an improved UV behaviour, due to subtleties related to the analytical continuation from the Minkowski to the Euclidean metric. This continuation is further affected at the dynamical level due to a field-dependence of the poles of the Green functions of the particle-like states, for curvatures of the potential of order unity in ghost mass units. The one-loop scalar potential in lambda*phi^4 theory with a single higher derivative term is shown to have infinitely many counterterms, while for a very large mass of the ghost the usual 4D renormalisation is recovered. In the supersymmetric context of the O'Raifeartaigh model of spontaneous supersymmetry breaking with a higher derivative (supersymmetric) operator, it is found that quadratic divergences are present in the one-loop self-energy of the scalar field. They arise with a coefficient proportional to the amount of supersymmetry breaking and suppressed by the scale of the higher derivative operator. This is also true in the Wess-Zumino model with higher derivatives and explicit soft breaking of supersymmetry. In both models, the UV logarithmic behaviour is restored in the decoupling limit of the ghost.The role of higher derivative operators in 4D effective field theories is discussed in both non-supersymmetric and supersymmetric contexts. The approach, formulated in the Minkowski space-time, shows that theories with higher derivative operators do not always have an improved UV behaviour, due to subtleties related to the analytical continuation from the Minkowski to the Euclidean metric. This continuation is further affected at the dynamical level due to a field-dependence of the poles of the Green functions of the particle-like states, for curvatures of the potential of order unity in ghost mass units. The one-loop scalar potential in lambda*phi^4 theory with a single higher derivative term is shown to have infinitely many counterterms, while for a very large mass of the ghost the usual 4D renormalisation is recovered. In the supersymmetric context of the O'Raifeartaigh model of spontaneous supersymmetry breaking with a higher derivative (supersymmetric) operator, it is found that quadratic divergences are present in the one-loop self-energy of the scalar field. They arise with a coefficient proportional to the amount of supersymmetry breaking and suppressed by the scale of the higher derivative operator. This is also true in the Wess-Zumino model with higher derivatives and explicit soft breaking of supersymmetry. In both models, the UV logarithmic behaviour is restored in the decoupling limit of the ghost.The role of higher derivative operators in 4D effective field theories is discussed in both non-supersymmetric and supersymmetric contexts. The approach, formulated in the Minkowski space–time, shows that theories with higher derivative operators do not always have an improved UV behaviour, due to subtleties related to the analytical continuation from the Minkowski to the Euclidean metric. This continuation is further affected at the dynamical level due to a field-dependence of the poles of the Green functions of the particle-like states, for curvatures of the potential of order unity in ghost mass units. The one-loop scalar potential in λ ϕ 4 theory with a single higher derivative term is shown to have infinitely many counterterms, while for a very large mass of the ghost the usual 4D renormalisation is recovered. In the supersymmetric context of the O'Raifeartaigh model of spontaneous supersymmetry breaking with a higher derivative (supersymmetric) operator, it is found that quadratic divergences are present in the one-loop self-energy of the scalar field. They arise with a coefficient proportional to the amount of supersymmetry breaking and suppressed by the scale of the higher derivative operator. This is also true in the Wess–Zumino model with higher derivatives and explicit soft breaking of supersymmetry. In both models, the UV logarithmic behaviour is restored in the decoupling limit of the ghost

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Organic Digital Logic and Analog Circuits Fabricated in a Roll-to-Roll Compatible Vacuum-Evaporation Process

    Get PDF
    We report the fabrication of a range of organic circuits produced by a high-yielding, vacuum-based process compatible with roll-to-roll production. The circuits include inverters, NAND and NOR logic gates, a simple memory element (set-reset latch), and a modified Wilson current mirror circuit. The measured circuit responses are presented together with simulated responses based on a previously reported transistor model of organic transistors produced using our fabrication process. Circuit simulations replicated all the key features of the experimentally observed circuit performance. The logic gates were capable of operating at frequencies in excess of 1 kHz while the current mirror circuit produced currents up to 18 μA

    On the contact detection for contact-impact analysis in multibody systems

    Get PDF
    One of the most important and complex parts of the simulation of multibody systems with contact-impact involves the detection of the precise instant of impact. In general, the periods of contact are very small and, therefore, the selection of the time step for the integration of the time derivatives of the state variables plays a crucial role in the dynamics of multibody systems. The conservative approach is to use very small time steps throughout the analysis. However, this solution is not efficient from the computational view point. When variable time step integration algorithms are used and the pre-impact dynamics does not involve high-frequencies the integration algorithms may use larger time steps and the contact between two surfaces may start with initial penetrations that are artificially high. This fact leads either to a stall of the integration algorithm or to contact forces that are physically impossible which, in turn, lead to post-impact dynamics that is unrelated to the physical problem. The main purpose of this work is to present a general and comprehensive approach to automatically adjust the time step, in variable time step integration algorithms, in the vicinity of contact of multibody systems. The proposed methodology ensures that for any impact in a multibody system the time step of the integration is such that any initial penetration is below any prescribed threshold. In the case of the start of contact, and after a time step is complete, the numerical error control of the selected integration algorithm is forced to handle the physical criteria to accept/reject time steps in equal terms with the numerical error control that it normally uses. The main features of this approach are the simplicity of its computational implementation, its good computational efficiency and its ability to deal with the transitions between non contact and contact situations in multibody dynamics. A demonstration case provides the results that support the discussion and show the validity of the proposed methodology.Fundação para a Ciência e a Tecnologia (FCT
    corecore