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Organic Digital Logic and Analog Circuits
Fabricated in a Roll-to-Roll Compatible
Vacuum-Evaporation Process

D. Martin Taylor, Eifion R. Patchett, Aled Williams, Nikola Joncew Neto, Zigian Ding,
Hazel E. Assender, John J. Morrison, and Stephen G. Yeates

Abstract— We report the fabrication of a range of organic
circuits produced by a high-yielding, vacuum-based process
compatible with roll-to-roll production. The circuits include
inverters, NAND and NOR logic gates, a simple memory element
(set-reset latch), and a modified Wilson current mirror circuit.
The measured circuit responses are presented together with
simulated responses based on a previously reported transistor
model of organic transistors produced using our fabrication
process. Circuit simulations replicated all the key features of
the experimentally observed circuit performance. The logic gates
were capable of operating at frequencies in excess of 1 kHz while
the current mirror circuit produced currents up to 18 pA.

Index Terms— Analog circuits, circuit simulation, digital
circuits, logic circuits, organic electronics, thin film transistors
(TFTs).

I. INTRODUCTION

VER the last decade or so, there has been increasing

interest in developing low-cost processes for printing
organic thin film transistors (OTFTs) and circuits onto flexible
substrates. Initial efforts were based around ink-jet printing
[1], [2] and are still being actively developed [3]-[5] for OTFT
fabrication. Recently, significant progress has been made in
developing roll-to-roll (R2R) fabrication utilizing other print-
ing technologies including offset, gravure and flexographic
printing [6]-[12], and combinations thereof.

While some success has been achieved with a hybrid of Si
and printing technologies [13], there are still many problems
to overcome in all-solution-printing approaches. The resulting
thin film transistors (TFTs) tend to suffer from low yield,
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poor device-to-device reproducibility, and low mobility, often
a consequence of ink formulation, layer morphology, and
poor interfaces. When coupled with the thick gate insulators
needed to minimize pinhole defects and the long channels
resulting from poor printing resolution, high operating voltages
(50-100 V) are necessary to effect even modest circuit
performance.

In [14]-[18], we have demonstrated that OTFT and circuit
fabrication based on thermal evaporation of the various layers
is a feasible proposition for low-cost R2R device and circuit
fabrication. Commercial vacuum equipment is already avail-
able for applying metal patterns onto plastic packaging [19].
Using a combination of metal evaporation with oil printing in
a lift-off-type process [20], [21] a resolution of 30-50 um is
possible at web speeds up to ~200 m/min. Low-cost, high-
speed processes [14], [22] are also available commercially
for applying thin, polymer barrier layers to plastic packaging,
providing an established route for the formation of pinhole-
free, electrically robust insulating layers.

Vacuum processing removes many solvent related issues,
e.g., solvent drying times and recovery, solvent-induced layer
interdiffusion, pinhole defects, and surface roughness, which
can lead to poor device performance and low yield, thus negat-
ing the suggested cost advantage of solution-based processes.

We have already demonstrated [18] that using vacuum-based
methods compatible with R2R manufacture, 90-transistor
arrays with high mobility, ~1 cm?/Vs, can be produced rou-
tinely with high yield > 90%. Furthermore, the bottom-gate,
top-contact devices, based on polymerized, flash-evaporated
tripropyleneglycol diacrylate (TPGDA) monomer as the gate
insulator and dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene
(DNTT) [23] as the active semiconductor, displayed good
operational and environmental stability. In [18], we focused
attention on the fabrication and characterization of transistors,
inverters, and ring oscillators. Here, we extend this novel,
vacuum-based fabrication approach to the manufacture of dig-
ital logic circuits [NAND/NOR logic gates and set-reset (S—R)
latch] and an analog circuit (current mirror). We also show
that a previously derived transistor model [18], when used to
simulate the response of the fabricated circuits, replicates well
the observed experimental performance.

II. EXPERIMENT

Arrays of NAND, NOR, S-R latches, and current mir-
rors were fabricated with high yield on precleaned,

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see creativecommons.org/licenses/by/3.0/
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Fig. 1. Digital logic circuits fabricated, tested, and simulated in this paper.
(a) Inverter. (b) NAND gate. (c) NOR gate. (d) S-R latch.

50 mm x 50 mm square, 125-um-thick polyethylene naph-
thalate (PEN) (Dupont—Teijin) substrates using our previously
described protocols [14]-[18]. Briefly, the gate-level metalliza-
tion was achieved by thermally evaporating aluminum through
appropriate Kapton shadow masks (Laser Micromachining
Ltd) onto the PEN substrates. These were then fixed onto the
water-cooled drum of a webcoater (Aerre Machines) equipped
with a Sigma polymer coating system (Sigma Technologies)
and rotated at a linear speed of 25 m/min. TPGDA vapor was
directed through Kapton shadow masks onto the metalized
substrate where it condensed. The liquid film passed immedi-
ately under an Ar plasma source where it cross linked to form
a robust insulating layer ~400-500-nm thick. As the samples
were directly attached to the coating drum for experimental
convenience, the film was built up over several passes under
the deposition/curing source.

To minimize the deleterious effects of polymer polar groups
on carrier mobility [24], a polystyrene (Mw = 350 000) buffer
layer [18] was spin coated from 3 wt% solution in toluene
at 1000 r/min onto the TPGDA in a nitrogen glove box and
heated on a hot plate at 100 °C for 10 min, thus forming a
two-layer gate dielectric with capacitance 4.38 nF/cm?. The
substrates were then transferred into an integrated evapora-
tor (Minispectros, Kurt Lesker) for the vacuum deposition
(2.4 nm/min) onto the insulator of highly pure, recrystallized
DNTT [18], [23], a high-mobility, air-stable organic semicon-
ductor [25], [26]. Without exposing the substrates to ambient
air, the source/drain metallization layer was deposited in the
same evaporator by thermal evaporation of gold through a
Kapton shadow mask. The aspect ratio W/L (where W and L
are the channel width and length, respectively) of the unipolar
saturated load transistors in the inverter, NAND, and NOR
circuits was 625 um/100 um. For the driver (input) transis-
tors and all four transistors in the mirror circuit, W/L was
2500 4m/50 pm.

OTFT characteristics, inverter transfer characteristics, and
current-mirror functionality were measured using a Keithley
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Fig. 2. Inverter transfer characteristics (solid lines) and gain (dotted lines)
for two different probe systems (see text for details). Vpp = —40 V.

model 4200 semiconductor characterization system in ambient
dark conditions. Owing to the poor frequency response of
the Keithley system, the time responses of inverters, NAND
and NOR logic gates, and the S-R latch were recorded by
connecting the output of each circuit to a digital oscilloscope
(Agilent DSO-X 2014A) via a buffer amplifier to minimize
oscilloscope loading effects. The input signals were provided
from a TTi TGA1242 Waveform Generator connected to a
high voltage amplifier (Falco Systems Model WMAO1). The
source follower buffer amplifier design (based on the OPA445
op-amp) was a compromise between high voltage capability,
high frequency response (2 MHz), and low bias current
(10 pA). This last results in a much lower effective input resis-
tance than presented by the preamplifier input to the Keithley
source measure unit (SMU) (~101° Q). For comparison, there-
fore, static inverter transfer characteristics were also obtained
using the oscilloscope-buffer amplifier combination. Device
parameter extraction and circuit simulations were undertaken
using Silvaco’s universal OTFT (UOTFT) model (Level = 37)
and Gateway SmartSpice Circuit Simulator.

III. RESULTS AND DISCUSSION

The four logic gates fabricated and characterized in this
paper are shown in Fig. 1. The inverter function was achieved
by grounding the connection between the two input OTFTs
of the NAND circuit. The current-mirror circuit is shown in
the inset in Fig. 7. In the following sections, both the experi-
mentally measured circuit performances and their simulations
are presented. In all cases, the simulations were based on a
representative model card for our transistors that was derived
using Silvaco’s UOTFT software and presented in [18].

A. Inverter

The static transfer characteristic of the inverter section of
a NAND gate (Fig. 2), not surprisingly, is seen to depend
on the input impedance of the measurement system. Using
the Keithley system, the output voltage swing is ~35 V
with Vpp = —40 V but shows strong hysteresis. Since the
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Fig. 3. (a) Experimental and (b) simulated inverter response. The frequency
of the input square wave is 400 Hz and Vpp = —40 V.

measurement took around ~6 min, this may have resulted
from threshold voltage shifts in the OTFTs. However, using
the oscilloscope/buffer amplifier approach over an even longer
timescale, there was negligible hysteresis but a lower output
swing, ~20 V. The reduced output swing is due to the 10-pA
bias current of the buffer amplifier shunting the drive transistor
while the significantly higher input resistance of the Keith-
ley preamplifier leads to the hysteresis. Both measurements
indicate an inverter gain approaching two. In terms of noise
margin, the buffer amplifier will provide conditions closer to
those prevailing in circuit operation, i.e., high and low noise
margins NMy ~4.7 V and NMy ~4.4 V [27]. This is more
than sufficient for ensuring continuous operation of a seven-
stage ring oscillator for 8 h, as reported previously [18] and
the robust performance of S—R logic gates as described below.

In Fig. 3(a) is shown the response of the same inverter
to a 400 Hz, 40 V input square wave (Vpp = —40 V).
Whilst the driver transistor is able to pull down the output to
—3.1V, the load transistor pulls up the output only to —22.5 V.
Since the latter operates in saturation at all times the current
Ip(load), it can supply to the load capacitance Cy, is given by

w 2
Ip(load) = ﬁ,uCi [(Vbp — V1) — Vourl (D

where C; is the capacitance per unit area of the gate dielectric,
Vout the inverter output voltage, and Vrr the threshold
voltage of the load transistor. If the driver transistor is fully
turned OFF when the input voltage VN = 0, then Ip(load) will
also be close to zero. This would correspond to the condition
Vpp — Vout — V1L = 0, which suggests that Vp = —17.5 V.
This is close to that previously reported (—18.15 £ 0.25 V)

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 61, NO. 8, AUGUST 2014

and obtained using the Silvaco’s UOTFT software to extract
device parameters from the characteristics of OTFTs produced
using the same fabrication procedures [18]. However, in the
present case, since Vour is determined by the bias current of
the buffer amplifier, V1 will be lower.
Equation (1) may also be used to determine the rate at which
Vour rises to high when the driver OTFT is turned ON since
d‘;,otUT _ b (Ckzad) = % [(Vop — VL) — Vourl® (2)
where f = (W/L)uC;. Separating the variables in (2) and
integrating subject to the boundary condition that at ¢+ = 0,
Vout = 0 yields the relation

Vour  (B/2CL)(Vop — VIL)t 3)

(Vob — V1) 14 (8/2CL)(Vbp — VL)t

from which it is seen that Vgoyur reaches 50% of its final
value when (£/2CL)(Vpp — VL)t = 1. Inserting the relevant
values of W, L, and C; for the load transistor and assuming
that 1 = 1 cm?/Vs, then g = 2.74 x 10783Q~-'v-1. ¢,
comprises the capacitance of the buffer amplifier and con-
necting cables (48 pF) and the gate capacitance (40 pF) of the
driver transistor that is dominated by the parasitic gate—drain
overlap capacitance (our transistors were designed to reflect
the registration ability of a high-speed R2R process [18]).
Noting that [Vpp — V1| > 22.5 V, then the time taken for
Vour to reach 50% of its final value #50(R) is estimated to be
less than ~260 us. This is significantly longer than measured
experimentally, t50(R) ~ 135us, suggesting that parasitic gate
capacitance or Vr (or both) have been over-estimated.

In Fig. 3(b), we show the simulated inverter performance.
As in the calculation above, the simulated circuit model
included the capacitive load presented by the gate of the driver
transistor plus the buffer amplifier and cable. The simulated
response closely resembles the measured inverter output as
it switches between low (—3.1 V) and high (—22.5 V) even
reproducing the spikes arising from capacitive breakthrough.
From the simulations, t50(R) is estimated to be ~130 us and
close to that measured experimentally. In the later stages of
the transition to high, the fabricated circuit performs better
than predicted by simulation. This suggests that, as Vour
increases toward Vpp, the measured Ip(load) falls more
slowly than simulation predicts. While this may arise from
a parasitic source—drain current, which significantly increases
the conductance of the smaller load OTFT [18], the sharper
cutoff is probably caused by the buffer amplifier.

A similar analysis to that above can be undertaken for the
transition from high to low, i.e., when the driver transistor is
turned ON. Now, to a first approximation, with Vv = —40 V
we may assume that the driver acts as a constant current
source, Ip (driver), discharging Cy at a constant rate so that
the time to switch to low is given by

_ Cr-AVour _ 2Cp- AVour
~ Ip(driver) — B(ViN — Vip)?
where Vrp is the threshold voltage of the driver transis-
tor, assumed equal to Vrr, and f = 2.19 x 1077Q~1v~!
reflecting the larger aspect ratio W/L of this device. For
AVout = 19.4 V, the time taken to reach 50% of the output

“)
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Fig. 4. (a) Experimental and (b) simulated responses of a NAND logic gate.
Input square wave frequencies are 400 Hz (Vj,1) and 200 Hz (Vjy2).

swing f50(F) is 15 us. From the measured and simulated
responses, the transition times t50(F) to fall by AVouyr/2
are estimated to be ~25 and ~40 us, respectively. This is
significantly faster than from low to high reflecting the higher
transconductance of the driver transistor; that (4) predicts a
shorter switching time than these is not surprising. As Vour
falls toward zero, Ip(load) increases and should be subtracted
from Ip (driver) in (4). Nevertheless, it may be concluded
that with a propagation delay, [#50(R) + t50(F)], of ~160 us
at Vpp = —40 V, the inverter is well-capable of operating at
frequencies >1 kHz.

B. NAND and NOR Gates

The measured response of the NAND gate [Fig. 1(b)] to
square wave input signals Vini (400 Hz) and Vin2 (200 Hz) is
shown in Fig. 4(a). As expected, Vour follows the truth table
for a NAND gate (Table I), i.e., remains high (—21.5 V) except
when both inputs are high (—40 V). The simulated response
in Fig. 4(b) resembles closely that measured experimentally.
The larger capacitive spikes in the simulation result from
the sharper edges of the simulated input signals compared
with those used experimentally. This also explains why the
small feature observed in the measured response between
5 and 6 ms is not reproduced. The shallower edges of the
input signals applied experimentally allow both transistors
to conduct partially during the transition, thus leading to a
tendency for the output to go lower.

The experimental and simulated responses of the NOR gate
[Fig. 1(c)] to input square waves of 400 and 200 Hz are given
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TABLE I
TRUTH TABLES FOR NAND AND NOR LOGIC GATES

NAND GATE NOR GATE
Vini Vinz Vour Vini Vinz Vour
0 0 1 0 0 1
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 0
TABLE II
TRUTH TABLE FOR THE S—R LATCH
S R Q Q
0 0 Invalid Invalid
0 1 1 0
1 0 0 1
1 1 No change No change
10
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Fig. 5. (a) Experimental and (b) simulated output of a NOR logic gate. Input
square wave frequencies are 400 Hz (Vj,1) and 200 Hz (Vjy2).

in Fig. 5(a) and (b), respectively. The simulation again predicts
with some accuracy the features observed in the measured
response, with both following the NOR truth table (Table I).

The successful demonstration of NAND and NOR gates fab-
ricated using a R2R compatible vacuum-evaporation process
opens a route to the fabrication of more complex logic circuits.
In the following section, we show that the technology can be
extended to the fabrication of a simple static memory element,
the so-called S—R latch.
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Fig. 6. (a) Experimental and (b) simulated response of an S—R latch.

C. NAND-Based S-R Latch

S—R latches may be implemented using either NAND or NOR
logic gates. Here, we present results obtained from a S—R latch
based on cross-coupled NAND gates [Fig. 1(d)]. The truth table
for the latch (Table II) shows that the outputs, i.e., the next
states of Q and Q, depend not just on the inputs S and R
but also on the current state of the output. For example, if
either input is 0 (low) and the other 1 (high), the outputs will
be defined by the inputs. However, if both inputs are 1, the
outputs will remain in their current state 0, 1 or 1, 0. When
used in logic operations, two low inputs, i.e., 0, O are avoided
for two reasons: 1) the memory state is lost—both outputs go
high so one output is no longer the complement of the other
and 2) the circuit may go unstable.

The various states may be observed in Fig. 6 for both
the experimental and simulated S-R latch circuits. Starting
at 10 ms in the experimental plots [Fig. 6(a)], S = 1 and
R = 0 and results in Q = 0, O = 1. Reversing the inputs
to 0, 1 changes the outputs to 1, 0. At ~20 ms, both inputs
go high (1,1) but the outputs remain unchanged. When both
inputs go low (0,0), both outputs go high, i.e., the invalid
state. Simulations were undertaken [Fig. 6(b)] for this same
input sequence, albeit time-shifted by 10 ms, and using the
same OTFT model card as above for the inverter, NAND, and
NOR gates. As can be seen, the simulation is in reasonable
agreement with the measured response of the circuit.

D. Current Mirror

A current mirror is a basic integrated circuit element serving
to provide controlled bias currents or acting as a dynamic
load for other circuits. The inset in Fig. 7 shows a modified
Wilson mirror circuit that was fabricated and tested as part of
the present program. Here, the reference current source IRgp
will force the same current through transistor 77 establishing
a gate—source voltage Vgs also common to 7>, which then
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produces a current Ip; in the right branch. If 77 and T»
are exactly identical, then Iy = Irgr. The actual circuit
performance is shown in Fig. 7 together with the simulation.

Although all four TFTs were nominally identical, the depar-
ture from the ideal response as represented by the simulation,
suggests that minor differences exist in the characteristics
of transistors 77 and 7. It is readily shown [28] that, the
difference in current (IRgp—Iy) = (Ir1-It2) = Alp is
given by

Alp 2AVr ApB

Irkerp (Vs —Vr1) B
where V) and ) refer to Ty, AVy = (Vr1 — Vy2) and A =
B — o).

The analysis shows that threshold voltage difference is
more important at low Vgs with its effect diminishing at
higher values. In crystalline silicon devices, carrier mobility
is constant under normal operating conditions so that AS/p;
reduces to the fractional error in the aspect ratio, i.e., to
A(W/L)(W/L):. However, at the current state of development
of organic transistors, there will also be incremental differ-
ences in mobility between devices, with the further compli-
cation that the mobility is gate-voltage dependent, leading to
a more complex dependence on Vgg than initially expected
from (5).

Nevertheless, a controlled constant current source delivering
up to 18 A is more than sufficient for most analog circuit
applications.

)

IV. CONCLUSION

We have shown for the first time that logic devices ranging
from simple inverters to the more complex S—R latch can
be fabricated using a novel, vacuum-based, R2R compatible
OTFT process. Propagation delay in the inverter is <200 us
enabling the operation of logic circuits at frequencies above
1 kHz. This frequency would be significantly enhanced by
reducing gate—drain overlap capacitances in optimized devices.
The fabrication process has also been used to produce a
simple analog circuit, namely the modified Wilson current
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mirror circuit. Although not showing ideal behavior, the
circuit delivers a controlled output current up to 18 uA
that changes linearly over most of the input current range
albeit shifted by ~2 uA to higher values. The reproducibly
high yield of stable transistors produced by our process will
readily allow expansion to more complex digital and analog
circuits.
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