121 research outputs found

    Jamming at Zero Temperature and Zero Applied Stress: the Epitome of Disorder

    Full text link
    We have studied how 2- and 3- dimensional systems made up of particles interacting with finite range, repulsive potentials jam (i.e., develop a yield stress in a disordered state) at zero temperature and applied stress. For each configuration, there is a unique jamming threshold, ϕc\phi_c, at which particles can no longer avoid each other and the bulk and shear moduli simultaneously become non-zero. The distribution of ϕc\phi_c values becomes narrower as the system size increases, so that essentially all configurations jam at the same ϕ\phi in the thermodynamic limit. This packing fraction corresponds to the previously measured value for random close-packing. In fact, our results provide a well-defined meaning for "random close-packing" in terms of the fraction of all phase space with inherent structures that jam. The jamming threshold, Point J, occurring at zero temperature and applied stress and at the random close-packing density, has properties reminiscent of an ordinary critical point. As Point J is approached from higher packing fractions, power-law scaling is found for many quantities. Moreover, near Point J, certain quantities no longer self-average, suggesting the existence of a length scale that diverges at J. However, Point J also differs from an ordinary critical point: the scaling exponents do not depend on dimension but do depend on the interparticle potential. Finally, as Point J is approached from high packing fractions, the density of vibrational states develops a large excess of low-frequency modes. All of these results suggest that Point J may control behavior in its vicinity-perhaps even at the glass transition.Comment: 21 pages, 20 figure

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    The Physics of Star Cluster Formation and Evolution

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe

    Measurement of forward charged hadron flow harmonics in peripheral PbPb collisions at √sNN = 5.02 TeV with the LHCb detector

    Get PDF
    Flow harmonic coefficients, v n , which are the key to studying the hydrodynamics of the quark-gluon plasma (QGP) created in heavy-ion collisions, have been measured in various collision systems and kinematic regions and using various particle species. The study of flow harmonics in a wide pseudorapidity range is particularly valuable to understand the temperature dependence of the shear viscosity to entropy density ratio of the QGP. This paper presents the first LHCb results of the second- and the third-order flow harmonic coefficients of charged hadrons as a function of transverse momentum in the forward region, corresponding to pseudorapidities between 2.0 and 4.9, using the data collected from PbPb collisions in 2018 at a center-of-mass energy of 5.02 TeV . The coefficients measured using the two-particle angular correlation analysis method are smaller than the central-pseudorapidity measurements at ALICE and ATLAS from the same collision system but share similar features

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    Curvature-bias corrections using a pseudomass method

    Get PDF
    Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using Z→μ + μ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z→μ + μ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass

    The Physics of the B Factories

    Get PDF
    corecore