We have studied how 2- and 3- dimensional systems made up of particles
interacting with finite range, repulsive potentials jam (i.e., develop a yield
stress in a disordered state) at zero temperature and applied stress. For each
configuration, there is a unique jamming threshold, ϕc, at which
particles can no longer avoid each other and the bulk and shear moduli
simultaneously become non-zero. The distribution of ϕc values becomes
narrower as the system size increases, so that essentially all configurations
jam at the same ϕ in the thermodynamic limit. This packing fraction
corresponds to the previously measured value for random close-packing. In fact,
our results provide a well-defined meaning for "random close-packing" in terms
of the fraction of all phase space with inherent structures that jam. The
jamming threshold, Point J, occurring at zero temperature and applied stress
and at the random close-packing density, has properties reminiscent of an
ordinary critical point. As Point J is approached from higher packing
fractions, power-law scaling is found for many quantities. Moreover, near Point
J, certain quantities no longer self-average, suggesting the existence of a
length scale that diverges at J. However, Point J also differs from an ordinary
critical point: the scaling exponents do not depend on dimension but do depend
on the interparticle potential. Finally, as Point J is approached from high
packing fractions, the density of vibrational states develops a large excess of
low-frequency modes. All of these results suggest that Point J may control
behavior in its vicinity-perhaps even at the glass transition.Comment: 21 pages, 20 figure