36 research outputs found

    The Carnegie Supernova Project. I. Third Photometry Data Release of Low-redshift Type Ia Supernovae and Other White Dwarf Explosions

    Get PDF
    We present final natural-system optical (ugriBV) and near-infrared (YJH) photometry of 134 supernovae (SNe) with probable white dwarf progenitors that were observed in 2004-2009 as part of the first stage of the Carnegie Supernova Project (CSP-I). The sample consists of 123 Type Ia SNe, 5 Type Iax SNe, 2 super-Chandrasekhar SN candidates, 2 Type Ia SNe interacting with circumstellar matter, and 2 SN 2006bt-like events. The redshifts of the objects range from to 0.0835; the median redshift is 0.0241. For 120 (90%) of these SNe, near-infrared photometry was obtained. Average optical extinction coefficients and color terms are derived and demonstrated to be stable during the five CSP-I observing campaigns. Measurements of the CSP-I near-infrared bandpasses are also described, and near-infrared color terms are estimated through synthetic photometry of stellar atmosphere models. Optical and near-infrared magnitudes of local sequences of tertiary standard stars for each supernova are given, and a new calibration of Y-band magnitudes of the Persson et al. standards in the CSP-I natural system is presented.Fil: Krisciunas, Kevin. Texas A&M University; Estados UnidosFil: Contreras, Carlos. University Aarhus; Dinamarca. Las Campanas Observatory; ChileFil: Burns, Christopher R.. Las Campanas Observatory; ChileFil: Phillips, M. M.. Las Campanas Observatory; ChileFil: Stritzinger, Maximilian D.. Las Campanas Observatory; Chile. University Aarhus; DinamarcaFil: Morrell, Nidia Irene. Las Campanas Observatory; ChileFil: Hamuy, Mario. Universidad de Chile; ChileFil: Anais, Jorge. Las Campanas Observatory; ChileFil: Boldt, Luis. Las Campanas Observatory; ChileFil: Busta, Luis. Las Campanas Observatory; ChileFil: Campillay, Abdo. Las Campanas Observatory; ChileFil: Castellón, Sergio. Las Campanas Observatory; ChileFil: Folatelli, Gaston. Las Campanas Observatory; Chile. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Freedman, Wendy L.. University of Chicago; Estados UnidosFil: González, Consuelo. Las Campanas Observatory; ChileFil: Hsiao, Eric Y.. Florida State University; Estados Unidos. University Aarhus; Dinamarca. Las Campanas Observatory; ChileFil: Krzeminski, Wojtek. Las Campanas Observatory; ChileFil: Persson, Sven Eric. Carnegie Observatories;Fil: Roth, Miguel. Gmto Corporation; Chile. Las Campanas Observatory; ChileFil: Salgado, Francisco. Leiden Observatory Research Institute; . Las Campanas Observatory; ChileFil: Serón, Jacqueline. Las Campanas Observatory; Chile. Cerro Tololo Inter American Observatory; ChileFil: Suntzeff, Nicholas B.. Texas A&M University; Estados UnidosFil: Torres, Simón. Soar Telescope; Chile. Las Campanas Observatory; ChileFil: Filippenko, Alexei V.. University of California at Berkeley; Estados UnidosFil: Li, Weidong. University of California at Berkeley; Estados UnidosFil: Madore, Barry F.. Jet Propulsion Laboratory, California Institute Of Technology; . Las Campanas Observatory; ChileFil: DePoy, D.L.. Texas A&M University; Estados UnidosFil: Marshall, Jennifer L.. Texas A&M University; Estados UnidosFil: Rheault, Jean Philippe. Texas A&M University; Estados UnidosFil: Villanueva, Steven. Texas A&M University; Estados Unidos. Ohio State University; Estados Unido

    First cosmology results using SNe Ia from the dark energy survey: analysis, systematic uncertainties, and validation

    Get PDF
    International audienceWe present the analysis underpinning the measurement of cosmological parameters from 207 spectroscopically classified type Ia supernovae (SNe Ia) from the first three years of the Dark Energy Survey Supernova Program (DES-SN), spanning a redshift range of 0.01

    First cosmology results using type Ia supernovae from the Dark Energy Survey: constraints on cosmological parameters

    Get PDF
    We present the first cosmological parameter constraints using measurements of type Ia supernovae (SNe Ia) from the Dark Energy Survey Supernova Program (DES-SN). The analysis uses a subsample of 207 spectroscopically confirmed SNe Ia from the first three years of DES-SN, combined with a low-redshift sample of 122 SNe from the literature. Our "DES-SN3YR" result from these 329 SNe Ia is based on a series of companion analyses and improvements covering SN Ia discovery, spectroscopic selection, photometry, calibration, distance bias corrections, and evaluation of systematic uncertainties. For a flat LCDM model we find a matter density Omega_m = 0.331 +_ 0.038. For a flat wCDM model, and combining our SN Ia constraints with those from the cosmic microwave background (CMB), we find a dark energy equation of state w = -0.978 +_ 0.059, and Omega_m = 0.321 +_ 0.018. For a flat w0waCDM model, and combining probes from SN Ia, CMB and baryon acoustic oscillations, we find w0 = -0.885 +_ 0.114 and wa = -0.387 +_ 0.430. These results are in agreement with a cosmological constant and with previous constraints using SNe Ia (Pantheon, JLA)

    KELT-25 b and KELT-26 b: A Hot Jupiter and a Substellar Companion Transiting Young A Stars Observed by TESS

    Get PDF
    We present the discoveries of KELT-25 b (TIC 65412605, TOI-626.01) and KELT-26 b (TIC 160708862, TOI-1337.01), two transiting companions orbiting relatively bright, early A stars. The transit signals were initially detected by the KELT survey and subsequently confirmed by Transiting Exoplanet Survey Satellite (TESS) photometry. KELT-25 b is on a 4.40 day orbit around the V = 9.66 star CD-24 5016 (Teff=8280-180+440 K, M ∗ = 2.18-0.11+0.12 M o˙), while KELT-26 b is on a 3.34 day orbit around the V = 9.95 star HD 134004 (Teff = 8640-240+500 K, M ∗ = 1.93-0.16+0.14 M o˙), which is likely an Am star. We have confirmed the substellar nature of both companions through detailed characterization of each system using ground-based and TESS photometry, radial velocity measurements, Doppler tomography, and high-resolution imaging. For KELT-25, we determine a companion radius of R P = 1.64-0.043+0.039 R J and a 3σ upper limit on the companion's mass of ∼64 M J. For KELT-26 b, we infer a planetary mass and radius of M P = 1.41-0.51+0.43MJ and R P = 1.94-0.058+0.060 R J. From Doppler tomographic observations, we find KELT-26 b to reside in a highly misaligned orbit. This conclusion is weakly corroborated by a subtle asymmetry in the transit light curve from the TESS data. KELT-25 b appears to be in a well-aligned, prograde orbit, and the system is likely a member of the cluster Theia 449
    corecore