744 research outputs found

    Establishment and operation of a pilot in vitro active genebank of cassava

    Get PDF

    Bistable molecular conductors with a field-switchable dipole group

    Full text link
    A class of bistable "stator-rotor" molecules is proposed, where a stationary bridge (stator) connects the two electrodes and facilitates electron transport between them. The rotor part, which has a large dipole moment, is attached to an atom of the stator via a single sigma bond. Hydrogen bonds formed between the rotor and stator make the symmetric orientation of the dipole unstable. The rotor has two potential minima with equal energy for rotation about the sigma bond. The dipole orientation, which determines the conduction state of the molecule, can be switched by an external electric field that changes the relative energy of the two potential minima. Both orientation of the rotor correspond to asymmetric current-voltage characteristics that are the reverse of each other, so they are distinguishable electrically. Such bistable stator-rotor molecules could potentially be used as parts of molecular electronic devices.Comment: 8 pages, 7 figure

    Mapping shallow urban groundwater temperatures, a case study from Cardiff, UK

    Get PDF
    Low-enthalpy ground source heating systems can help to reduce our dependence on fossil fuels, in turn reducing greenhouse gas emissions and increasing energy security. To de-risk and support the sustainable development, regulation and management of ground source heating systems in urban areas, detailed baseline mapping of groundwater temperatures is required. Groundwater temperatures were measured in 168 monitoring boreholes primarily within a Quaternary sand and gravel aquifer in the city of Cardiff, UK. The data have been used to create the first city-wide map of shallow groundwater temperatures in the UK. This map can be used both to support development of ground source heating and to act as a detailed baseline from which to measure change. Shallow groundwater temperatures under the city were found to be 2°C warmer than the UK average groundwater temperature and this additional heat is attributed to the urban heat island. The zone of seasonal fluctuation varies from 7.1 and 15.5 m below ground level (mbgl) within the shallow Quaternary aquifer, averaging 9.5 mbgl. Deeper groundwater temperature profiles incorporating both the Quaternary and bedrock aquifers suggest that a ‘zone of anthropogenic influence’ exists down to about 70 mbgl. Around a third of the UK's greenhouse gas emissions are produced by space heating, and the UK Government recognizes the need to change the way heat is produced and consumed so as to reduce the impacts of climate change and improve energy security (DECC 2013). In response to this driver the UK Government has established targets in the legally binding Climate Change Act 2008 to reduce greenhouse gas emissions by 80% from the 1990 baseline by 2050. In Wales the Well-being of Future Generations (Wales) Act 2015 requires public bodies to take action to undertake sustainable development to drive social, economic and environmental benefits, both now and into the future. Low-enthalpy ground source heating systems, when deployed in a sustainable manner, can provide a low-cost, low-carbon and secure form of heating (e.g. Allen et al. 2003). Ground source heat pumps can broadly be classified as either ‘open-loop’ or ‘closed-loop’ systems. Open-loop systems require the abstraction of groundwater, which is passed through a heat exchanger before being returned to the aquifer. Open-loop systems can have a higher coefficient of performance (COP) and require fewer boreholes where shallow groundwater is available. Open-loop systems may not be suitable if water cannot be successfully recharged to the same aquifer and there are also requirements for abstraction licences and discharge permits or exemptions. The closed-loop system uses a sealed pipe that can be either laid flat or installed vertically into a borehole. These systems often require a greater number of boreholes, increasing cost; however, in the UK they do not require licensing and this can reduce costs. Sustainable development of ground source heat pump (GSHP) systems for both heating and cooling requires characterization of baseline groundwater temperatures. Knowledge of baseline conditions is important to support the design and regulation of GSHP. Baseline temperature data are required to assess the potential impacts of multiple ground source heating and cooling systems so as to avoid interactions between neighbouring systems (Fry 2009; Headon et al. 2009). It is anticipated that if negative interactions between ground source heating and cooling systems continue, some aquifers, mainly in densely populated cities, will need to be managed in terms of heat as well as groundwater resources (Banks et al. 2009). Regulators need legal, policy and scientific tools to support risk-based management of the subsurface, and one such tool is baseline temperature data and mapping of groundwater heat resources. The shallow gravel aquifer in Cardiff is a favourable geological setting in which to develop open-loop ground source heating systems. To support the sustainable development of this technology we have produced the first city-wide baseline map of groundwater temperatures and better defined the depth of the zone of seasonal fluctuation. The data and supporting map outputs will provide an independent source of information for system designers and installers, housing developers, space planners and regulators that is intended to help inform planning decisions and optimize design of GSHP schemes. Additionally, we describe observed seasonal groundwater temperature variation and define the base of the ‘zone of seasonal fluctuation’, which will allow developers to locate abstraction boreholes at depths unaffected by seasonal temperature changes. An initial estimate of available thermal energy that could be transferred from existing dewatering abstractions is made as an illustration of the city-wide potential

    Improving rail wear and RCF performance using laser cladding

    Get PDF
    Laser cladding has been considered as a method for improving the wear and RCF performance of standard grade rail. This paper presents results of small scale tests carried out to assess the wear and RCF performance of rail which had been laser clad. Using the laser cladding process premium metals can be deposited on to the working surface of standard rail with the aim of enhancing the wear and RCF life of the rail. Various laser clad samples were tested using a twin-disc method. The candidate metals were clad on to standard R260 grade rail discs and were tested against a disc of standard wheel material. During the tests, wear rates and RCF initiation were monitored and compared to those of a standard rail disc. Six candidate cladding materials were chosen for this test: A multi-phase Manganese Steel Variant (MMV), Martensitic Stainless Steel (MSS), TWIP Steel, NiCrBSi, Stellite 12 and Stellite 6. The MSS, Stellite 6, and Stellite 12 samples showed reduced wear rates relative to the standard R260 Grade rail discs, and also produced a reduction in wheel steel wear. The RCF initiation resistance of all of the candidate materials was superior compared to the R260 Grade material

    Establishing an urban geo-observatory to support sustainable development of shallow subsurface heat recovery and storage

    Get PDF
    Low-enthalpy ground source heating and cooling is recognised as one strategy that can contribute towards reducing reliance on traditional, increasingly insecure, CO2-intense thermal power generation, as well as helping to address fuel poverty. Development of this technology is applicable in urban areas where high housing density often coincides with the presence of shallow aquifers. In urban areas groundwater temperatures can be elevated due to the subsurface Urban Heat Island effect. Uptake and development of this technology is often limited by initial investment costs, however, baseline temperature monitoring and characterisation of urban aquifers, conducted in partnership with local authorities, can provide a greater degree of certainty around resource and sustainability that can facilitate better planning, regulation and management of subsurface heat. We present a novel high-density, city-scale groundwater temperature observatory and introduce a 3D geological model aimed at addressing the needs of developers, planners, regulators and policy makers. The Cardiff Geo-Observatory measures temperature in a Quaternary aged sand and gravel aquifer in 61 boreholes and at a pilot shallow open-loop ground source heating system. We show that repurposing existing infrastructure can provide a cost effective method of developing monitoring networks, and make recommendations on establishing similar geo-observatories

    The status of GEO 600

    Get PDF
    The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode

    Growth and nutrient absorption of Cape Gooseberry (Physalis Peruviana L.) in soilless culture

    Full text link
    "This is an Author's Accepted Manuscript of an article published in [include the complete citation information for the final version of the article as published in the Journal of Plant Nutrition 2015 March, available online at: http://www.tandfonline.com/10.1080/01904167.2014.934474."Cape gooseberry (Physalis peruviana L.) is a solanaceous plant. The growth and time-course of nutrient accumulation of the plant and its partitioning between roots, stems, leaves, and fruits were examined. The study was conducted analyzing two nutrient solutions in soilless culture under greenhouse conditions during two consecutive seasons. The macronutrient contents were analyzed. On average, the yield was 8.9 t.ha(-1). Growth of the plant until 90 d after transplanting obeys an exponential function of time and the relative growth rate for this period was determined. Nitrogen (N) was the element that showed the highest concentration, corresponding to leaves (4.67%), followed by potassium (K) in stems (4.46%). The highest accumulations of N, phosphorous (P), calcium (Ca), and magnesium (Mg) were found in leaves and of K in the stems. Potassium showed the highest nutrient accumulation (29 g.plant(-1)) and the highest specific uptake rate.Torres Rubio, JF.; Pascual Seva, N.; San Bautista Primo, A.; Pascual España, B.; López Galarza, SV.; Alagarda Pardo, J.; Maroto Borrego, JV. (2015). Growth and nutrient absorption of Cape Gooseberry (Physalis Peruviana L.) in soilless culture. Journal of Plant Nutrition. 38(4):485-496. doi:10.1080/01904167.2014.934474S485496384Bellaloui, N., & Brown, P. H. (1998). Plant and Soil, 198(2), 153-158. doi:10.1023/a:1004343031242Bennett, J. P., Oshima, R. J., & Lippert, L. F. (1979). Effects of ozone on injury and dry matter partitioning in pepper plants. Environmental and Experimental Botany, 19(1), 33-39. doi:10.1016/0098-8472(79)90022-4CAUSTON, D. R. (1991). Plant Growth Analysis: The Variability of Relative Growth Rate Within a Sample. Annals of Botany, 67(2), 137-144. doi:10.1093/oxfordjournals.aob.a088112Convenio MAG-IICA (Ministerio de Agricultura y Ganadería. Institución Interamericana de Cooperación para la Agricultura). 2001. The cape gooseberry (Physalis peruvianaL.Physalis edulis). Subprograma de Cooperación Técnica, Ecuador. Available at: http://www.sica.gov.ec/agronegocios/Biblioteca/Convenio%20MAG%20IICA/productos/uvilla_mag.pdf (Accessed July 2007, in Spanish).El-Tohamy, W. A., El-Abagy, H. M., Abou-Hussein, S. D., & Gruda, N. (2009). Response of Cape gooseberry (Physalis peruviana L.) to nitrogen application under sandy soil conditions. Gesunde Pflanzen, 61(3-4), 123-127. doi:10.1007/s10343-009-0211-0Fresquet, J., Pascual, B., López-Galarza, S., Bautista, S., Baixauli, C., Gisbert, J. M., & Maroto, J. V. (2001). Nutrient uptake of pepino plants in soilless cultivation. The Journal of Horticultural Science and Biotechnology, 76(3), 338-343. doi:10.1080/14620316.2001.11511373Heuvelink, E., Bakker, M. J., Elings, A., Kaarsemaker, R. C., & Marcelis, L. F. M. (2005). EFFECT OF LEAF AREA ON TOMATO YIELD. Acta Horticulturae, (691), 43-50. doi:10.17660/actahortic.2005.691.2Leskovar, D. I., & Cantliffe, D. J. (1993). Comparison of Plant Establishment Method, Transplant, or Direct Seeding on Growth and Yield of Bell Pepper. Journal of the American Society for Horticultural Science, 118(1), 17-22. doi:10.21273/jashs.118.1.17Marcelis, L. F. M. (1993). Fruit growth and biomass allocation to the fruits in cucumber. 1. Effect of fruit load and temperature. Scientia Horticulturae, 54(2), 107-121. doi:10.1016/0304-4238(93)90059-yPuente, L. A., Pinto-Muñoz, C. A., Castro, E. S., & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733-1740. doi:10.1016/j.foodres.2010.09.034Radford, P. J. (1967). Growth Analysis Formulae - Their Use and Abuse1. Crop Science, 7(3), 171. doi:10.2135/cropsci1967.0011183x000700030001xRamadan, M. F., & Moersel, J. T. (2007). Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. Journal of the Science of Food and Agriculture, 87(3), 452-460. doi:10.1002/jsfa.2728Ramadan, M. F., & Moersel, J.-T. (2009). Oil extractability from enzymatically treated goldenberry (Physalis peruvianaL.) pomace: range of operational variables. International Journal of Food Science & Technology, 44(3), 435-444. doi:10.1111/j.1365-2621.2006.01511.xSalazar, M. R., Jones, J. W., Chaves, B., & Cooman, A. (2008). A model for the potential production and dry matter distribution of Cape gooseberry (Physalis peruviana L.). Scientia Horticulturae, 115(2), 142-148. doi:10.1016/j.scienta.2007.08.015Scholberg, J., McNeal, B. L., Jones, J. W., Boote, K. J., Stanley, C. D., & Obreza, T. A. (2000). Growth and Canopy Characteristics of Field-Grown Tomato. Agronomy Journal, 92(1), 152. doi:10.2134/agronj2000.921152xTrinchero, G. D., Sozzi, G. O., Cerri, A. M., Vilella, F., & Fraschina, A. A. (1999). Ripening-related changes in ethylene production, respiration rate and cell-wall enzyme activity in goldenberry (Physalis peruviana L.), a solanaceous species. Postharvest Biology and Technology, 16(2), 139-145. doi:10.1016/s0925-5214(99)00011-3Turner, A. (1994). Dry Matter Assimilation and Partitioning in Pepper Cultivars Differing in Susceptibility to Stress-induced Bud and Flower Abscission. Annals of Botany, 73(6), 617-622. doi:10.1006/anbo.1994.1077WILLIAMS, R. F. (1946). The Physiology of Plant Growth with Special Reference to the Concept of Net Assimilation Rate. Annals of Botany, 10(1), 41-72. doi:10.1093/oxfordjournals.aob.a083119Zapata, J.L., A. Saldarriaga, M. Londoño, and C. Díaz. 2002. Cape gooseberry Management in Colombia. Antioquia, Colombia: Rionegro, Programa Nacional de Transferencia de Tecnología Agropecuaria - Corpoica Regional Cuatro (in Spanish).Zerihun, A. (2000). Compensatory Roles of Nitrogen Uptake and Photosynthetic N-use Efficiency in Determining Plant Growth Response to Elevated CO2: Evaluation Using a Functional Balance Model. Annals of Botany, 86(4), 723-730. doi:10.1006/anbo.2000.123

    Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab

    Full text link
    We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies; results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.Comment: 22 pages, 16 figure

    Dynamics of tree diversity in undisturbed and logged subtropical rainforest in Australia

    Get PDF
    In subtropical rainforest in eastern Australia, changes in the diversity of trees were compared under natural conditions and eight silvicultural regimes over 35 years. In the treated plots basal area remaining after logging ranged from 12 to 58 m2 per ha. In three control plots richness differed little over this period. In the eight treated plots richness per plot generally declined after intervention and then gradually increased to greater than original diversity. After logging there was a reduction in richness per plot and an increase in species richness per stem in all but the lightest selective treatments. The change in species diversity was related to the intensity of the logging, however the time taken for species richness to return to pre-logging levels was similar in all silvicultural treatments and was not effected by the intensity of treatment. These results suggest that light selective logging in these forests mainly affects dominant species. The return to high diversity after only a short time under all silvicultural regimes suggests that sustainability and the manipulation of species composition for desired management outcomes is possible
    • …
    corecore