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Abstract: Low enthalpy ground source heating systems can help to reduce our dependency on fossil 12 

fuels, in turn reducing greenhouse gas emissions and increasing energy security. In order to de-risk and 13 

support the sustainable development, regulation and management of ground source heating systems in 14 

urban areas, detailed baseline mapping of groundwater temperatures is required.  Groundwater 15 

temperatures were measured in 168 monitoring boreholes primarily within a Quaternary sand and gravel 16 

aquifer in the city of Cardiff, UK. The data has been used to create the first city-wide map of shallow 17 

groundwater temperatures in the UK. This map can be used both to support development of ground 18 

source heating but also to act as a detailed baseline from which to measure change. Shallow groundwater 19 

temperatures under the city were found to be 2°C warmer than the UK average groundwater temperature 20 

and this additional heat is attributed to the Urban Heat Island. The Zone of Seasonal Fluctuation varies 21 

from 7.1 and 15.5 mbgl within the shallow Quaternary aquifer, averaging 9.5 mbgl. Deeper groundwater 22 
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temperature profiles incorporating both the Quaternary and bedrock aquifers, suggest a ‘Zone of 23 

Anthropogenic Influence’ exists down to about 70 mbgl. 24 

Introduction 25 

Around a third of the UK’s greenhouse gas emissions are produced by space heating, and the UK 26 

Government recognises the need to change the way heat is produced and consumed in order to reduce 27 

the impacts of climate change and improve energy security (DECC, 2013). In response to this driver 28 

the UK Government has established targets in the legally binding Climate Change Act, 2008, to reduce 29 

greenhouse gas emissions by 80% from the 1990 baseline by 2050. In Wales the ‘Well-being of Future 30 

Generations Act Wales (2015)’ requires Public Bodies to take action to undertake sustainable 31 

development to drive social, economic and environmental benefits, both now and into the future. Low 32 

enthalpy ground source heating systems, when deployed in a sustainable manner, can provide a low 33 

cost, low carbon, and secure form of heating (e.g. Allen et al., 2003).  Ground source heat pumps can 34 

broadly be classified as either ‘open loop’ or ‘closed loop’ systems. Open loop systems require the 35 

abstraction of groundwater which is passed through a heat exchanger before being returned to the 36 

aquifer. Open loop systems can have a higher coefficient of performance (COP) and require less 37 

boreholes where shallow groundwater is available. Open loop systems may not be suitable if water 38 

cannot be successfully recharged to the same aquifer and there are also requirements for abstraction 39 

licences and discharge permits or exemptions. The closed loop system uses a sealed pipe that can be 40 

either laid flat or installed vertically into a borehole, however these systems often require a greater 41 

number of boreholes, increasing cost, however in the UK they do not require licensing and this can 42 

reduce costs. Sustainable development of ground source heat pump (GSHP) systems for both heating 43 

and cooling requires characterisation of baseline groundwater temperatures.  Knowledge of baseline 44 

conditions is important to support the design and regulation of GSHP.  Baseline temperature data is 45 

required to assess the potential impacts of multiple ground source heating and cooling systems in order 46 

to avoid interactions between neighbouring systems (Fry 2009; Banks 2009; Headon et al., 2009). It is 47 

anticipated that if negative interactions between ground source heating and cooling systems continue 48 



that some aquifers, mainly in densely populated cities, will need to be managed in terms of heat as well 49 

as groundwater resources (Banks, 2009). Regulators need legal, policy and scientific tools to support 50 

risk based management of the subsurface, and one such tool is baseline temperature data and mapping 51 

of groundwater heat resources.   52 

 53 

The shallow gravel aquifer in Cardiff is a favourable geological setting in which to develop open loop 54 

ground source heating systems. To support the sustainable development of this technology we have 55 

produced the first city-wide baseline map of groundwater temperatures and better defined the depth of 56 

the Zone of Seasonal Fluctuation. The data and supporting map outputs will provide an independent 57 

source of information for system designers and installers, housing developers, space planners, and 58 

regulators that is intended to help inform planning decisions and optimise design of GSHP schemes. 59 

Additionally, we describe observed seasonal groundwater temperature variation and define the base of 60 

the ‘Zone of Seasonal Fluctuation’, which will enable developers to locate abstraction boreholes at 61 

depths unaffected by seasonal temperature changes.  An initial estimate of available thermal energy that 62 

could be transferred from existing dewatering abstractions is made as an illustration of the city-wide 63 

potential.  64 

Study area 65 

The City of Cardiff is located on a flat, low-lying, south-facing, coastal flood plain adjacent to the 66 

Bristol Channel (Fig. 1). It covers an area of 140 km2 and has a population of approximately 346,000 67 

(Office for National Statistics, 2012). The city lies at the mouth of three rivers; the Taff, Ely and 68 

Rhymney. Two of these, the Taff and the Ely, discharge into Cardiff Bay, an artificially impounded 69 

freshwater body, while the Rhymney drains directly into the Bristol Channel. Much of Cardiff is 70 

underlain by bedrock geology comprising Triassic age mudstone with subordinate siltstone, sandstone 71 

and conglomerate of the Mercia Mudstone Group. The bedrock is overlain by Quaternary superficial 72 

deposits, up to 30 m in thickness, that include Alluvium and Tidal Flat deposits (clay, silt, sand and 73 



gravel),  Glaciofluvial Sheet Deposits (sand and cobbly gravel), and Till (cobbly and clayey gravel) 74 

(Fig. 1 & Fig. 2).  75 

The groundwater regime in the city has been extensively monitored and modelled to quantify possible 76 

impacts, such as flooded basements, resulting from the construction and impoundment of the Cardiff 77 

Bay barrage in 1999 (Edwards, 1997; Heathcote et al., 1997; Heathcote et al., 2003). The target aquifer 78 

for the study is the glaciofluvial sand and gravel (Fig. 2) which is underlain by the lower permeability 79 

Triassic Mercia Mudstone, which defines the base of the sand and gravel aquifer. The sand and gravel 80 

is overlain by alluvium of intermediate to low permeability (Edwards, 1997). Groundwater is generally 81 

encountered within a few metres of the surface, however perched groundwater can occur closer to the 82 

surface within the extensive made ground deposits, especially in the southern part of the city.  Recharge 83 

to the glaciofluvial sand and gravel aquifer occurs both where it is unconfined, mainly to the north of 84 

the city, but also via downwards leakage through the alluvium within the city centre and south towards 85 

the coast.  Heathcote et al., (2003) describe how recharge can be impeded in areas where low 86 

permeability surface cover redirects precipitation to rivers or sewers. Conversely the potential impact 87 

of proposed sustainable urban drainage systems (SuDS) schemes should be considered as these could 88 

either further reduce (in the case of non-infiltration SuDS) or increase (e.g. borehole soakaways) 89 

recharge to the glaciofluvial sand and gravel aquifer. The impact on groundwater temperatures from 90 

SuDS within the aquifer are unknown.   Artificial recharge can also occur via leakage from drinking 91 

water mains and sewers (Heathcote et al., 2003). Groundwater flow generally occurs towards the rivers 92 

and southwards towards the coast, although man-made structures such as sewers can act to locally 93 

depress the peizometric surface (Heathcote et al., 2003). Groundwater in the glaciofluvial sand and 94 

gravel aquifer can discharge into the base of the rivers and the bay (Edwards, 1997).  Construction of 95 

the Cardiff Bay barrage, and creation of a permanent body of water (Cardiff Bay) has introduced a fixed 96 

head of water at 4.5 maOD, a stark contrast to the pre barrage natural estuary setting where mean spring 97 

tides ranging between +6.0 maOD to – 5.1 maOD (Heathcote & Crompton, 1997).  98 

 99 



History of groundwater monitoring in Cardiff 100 

It was possible to undertake high density mapping of groundwater temperatures at a city-wide scale due 101 

to an existing network of monitoring boreholes. This network was installed in response to construction 102 

of the Cardiff Bay Barrage which extends between Cardiff Docks and Penarth Head. The purpose of 103 

the Barrage was to create a freshwater lake and a new transport link that would provide a catalyst for 104 

urban regeneration in the derelict parts of Cardiff Docks (Hunter & Gander, 2002).  105 

Before construction, the Cardiff Bay Barrage Act, 1993, was approved by Parliament placing a legal 106 

requirement for long-term groundwater monitoring by the Cardiff Bay Development Corporation and 107 

its successor, Cardiff Harbour Authority, to assess the impacts of the barrage. Groundwater monitoring 108 

was based on model predictions of likely increases in groundwater levels that could result in the 109 

flooding of basements in the South Cardiff area (Cardiff Bay Barrage Act, 1993). The groundwater 110 

monitoring network was established between 1995 and 1999, comprising 236 boreholes extending 111 

down into made ground, superficial and bedrock deposits. Many of these sites have a dual installation 112 

with deep and shallow boreholes and piezometers. Today 194 boreholes remain in the monitoring 113 

system covering an area of approximately 15km2 (Williams, 2008), with 42 boreholes removed after a 114 

review in 2011. 115 

Pre-impoundment groundwater monitoring and subsequent modelling (Heathcote et al., 2003) predicted 116 

a general rise in groundwater levels to +4.5 maOD within the gravel aquifer.  Six areas were identified 117 

as being at particular risk from raised groundwater levels (Heathcote et al., 2003) within the gravel 118 

aquifer impacting on the made ground.  119 

 120 

In these areas ‘groundwater control zones’ (GCZ) were established, with observation wells and 121 

abstraction wells monitoring and maintaining groundwater levels within the pre-impoundment range 122 

(Fig. 1). The GCZs are characterised by an absence or disturbance of the estuarine alluvium that usually 123 

separates the gravels from the made ground. Three types of control measures were installed prior to 124 



impoundment; surface drilled horizontal collectors, single wells and field drains. This high density 125 

groundwater level monitoring network in south Cardiff has been utilised to characterise baseline urban 126 

groundwater temperatures. 127 

Materials and Methods 128 

To create the heat map and develop a city-wide groundwater temperature profiling campaign this 129 

study has made use of the pre-existing groundwater monitoring boreholes and data. The data used, 130 

and steps involved in the creation of the heat map, are described below in the order they were 131 

undertaken.  132 

The borehole monitoring network  133 

 The majority of the boreholes utilised in this study were designed and installed between 1995 and 134 

1997 (Ove Arup & Partners, 2000). In total, 225 boreholes were drilled, primarily within the Protected 135 

Property Area (Fig. 1) and are instrumented to monitor groundwater levels within the superficial 136 

deposits and the underlying bedrock. The majority of these boreholes are within the boundary line of 137 

the Protected Property Area that approximately equates with the 10 maOD contour and covers an area 138 

of 15 km2 however there are 11 boreholes located outside of the boundary (Fig. 1). The boreholes 139 

range in depth from 1.1 to 19.3 m and are gravel packed along a slotted section and sealed with 140 

bentonite clay. Construction is of plain uPVC (50-200 mm diameter) with a slotted section wrapped in 141 

a fine gauze geotextile membrane (Ove Arup & Partners, 2000).  142 

Data collection 143 

In situ fixed depth temperature data  144 

A variety of pressure transducers were deployed by Cardiff Harbour Authority (CHA) in the existing 145 

Cardiff Bay Barrage monitoring boreholes to record water levels in the network. Seven boreholes 146 

(CS248, CS268, CS318, CS274, CS276, CS328B, CS333A) were instrumented with OTT 147 



Hydrometry® Orpheus Mini loggers that record in situ groundwater temperature to a resolution of 148 

0.1°C and accuracy of ± 0.5 °C. The loggers were installed at fixed depths between 4 and 7 mbgl, 149 

within the zone of seasonal fluctuation, recording temperature every 30 minutes between March 2012 150 

and February 2014. The time series data from theses boreholes were used to identify annual maximum 151 

and minimum temperatures, enabling the profiling of boreholes to take place during April-May, when 152 

groundwater was coolest, and September-October when it was warmest.  153 

Depth temperature profile survey 154 

Downhole temperature profile data were collected in order to measure spatial variation in 155 

groundwater temperatures within the Quaternary aquifer. It was not possible to measure groundwater 156 

temperatures other than via groundwater boreholes, thus it is not known if,  for instance, grouted 157 

thermistors would provide different results. Temperature profiles were recorded at 168 boreholes (Fig. 158 

1) between 28th March and 15th April, 2014; the expected coolest time of the year for shallow 159 

groundwater. An ‘In-Situ® Rugged Temperature, Level and Conductivity (TLC) meter was used. The 160 

manufacturers report that the meter is able to record between -20 to 85 °C, has a resolution of 0.06 °C 161 

and is accurate to ±0.5 °C.  Of the 168 profiled boreholes, 164 were observation wells and 4 were 162 

licensed groundwater abstractions. Two deep boreholes were profiled including ‘Borehole B’, 78 m, 163 

and ‘Techniquest’ borehole, 130 m.  At each borehole a rest water level relative to a known datum 164 

was measured and observations on the daily weather, air temperature and immediate land use were 165 

recorded on a site proforma.  The TLC metre was calibrated at the start of the day, and allowed to 166 

settle in the hole until the temperature was stable. The TLC meter was then lowered by increments of 167 

1m, the probe being allowed time to settle at each meter interval before temperature data were 168 

collected.  Finally a plumbed depth was measured to confirm the base of the borehole, as ingress of 169 

fine sediments, collapse and inconsistent drilling records can often result in shortening and blocking 170 

of the slotted section.  171 

This process was repeated six months later on a subset of 35 boreholes during September 2014, when 172 

groundwater temperatures are generally at their warmest. The boreholes selected for resurvey 173 



represent a range of depth, geology and temperature conditions. Groundwater temperature profiles 174 

from the Spring and Autumn were compared to characterise the ‘Zone of Seasonal Fluctuation’.  175 

Surface water and air temperature monitoring  176 

Surface water temperature in the River Taff was recorded using a YSI®600XLM data logger 177 

suspended from a buoy 1m below the surface. The YSI® loggers are reported to have a range of -5 to 178 

60 °C, resolution of 0.01 °C and accuracy of ±0.15 °C, and record temperatures every 15 minutes. The 179 

average air temperature between March 2012 and February 2014 was 10.8 °C (Table 1) however the 180 

long-term average annual air temperature of 10.9 °C, calculated by averaging UK Met Office monthly 181 

average temperature data from Bute Park collected between 1981 and 2000, was used to infer the 182 

predicted geothermal gradient.  183 

Data analysis and baseline groundwater temperature map 184 

To create the baseline groundwater temperature map, data from the 168 borehole temperature profiles, 185 

collected in Spring 2014, were considered. Of these data the first (upper most) result from each profile 186 

was not considered in order to eliminate atmospheric effects. Data from a further 30 boreholes were 187 

excluded from the analysis as they were either dry or terminated less than 2 m below the rest water 188 

level, and therefore had only one temperature reading. A further 15 boreholes all <4 m deep were 189 

excluded where only made ground was encountered as they can become seasonally dry. Finally, 2 190 

other boreholes were discounted due to poor headworks or compromised casing suspected of allowing 191 

ingress of non-representative surface water into the borehole. Data from the repeat profiles measured 192 

at a subset of 35 boreholes in September 2014 were not used for the production of the heat map as 193 

these were only collected to understand temporal changes and to better define the Zone of Seasonal 194 

Fluctuation.  195 

For the remaining 121 boreholes the mean average temperature of the entire water column, excluding 196 

the first measurement of each profile, was calculated (Table 1). We acknowledge the potential effect 197 

of borehole construction (screened versus plain cased sections) on measured groundwater 198 



temperatures within a borehole column. In light of this we compared average groundwater 199 

temperatures within the slotted section of each borehole with those derived from the entire water 200 

column, including the slotted and plain cased sections of the borehole. There was <0.12 °C difference 201 

between the values, justifying the use of average whole borehole temperature values for creation of a 202 

baseline groundwater temperature map.  203 

The baseline groundwater temperature map was created using the average temperature data from these 204 

121 boreholes (Table 1). Contouring was done using Surfer® 10 (Golden Software, Inc). The grid file 205 

was created using the point Kriging method with no drifts and a linear variogram model. The extent of 206 

the grid was defined by the locations of the boreholes and the boundary of the Protected Property 207 

Area. The temperatures were contoured with a 0.5 °C contour interval, reflecting the probe 208 

manufacture’s stated accuracy. The filled contours were displayed with a colour ramp, where darker 209 

shades of red represent warmer temperatures and pale colours cooler temperatures. The contour plot 210 

was exported as a georeferenced TIFF and imported into ArcMap™ (Environmental Systems 211 

Research Institute, Inc) where it was clipped to fit the boundary of the Protected Property Area within 212 

which the majority of the monitoring boreholes are located (Fig. 1). 213 

The boreholes are mostly concentrated within the central part of the city, with the largest clusters 214 

located within the city centre, Riverside, Butetown and Grangetown areas. The density of boreholes in 215 

the east and west of the city is lower resulting in reduced level of confidence in the contour map here 216 

compared with the city centre, however the variation in borehole density was allowed for in the 217 

contouring. Kriging was chosen as the gridding method for its accuracy and for its ability to 218 

compensate for clustered data with a lesser weighting given to the cluster in the overall forecast. 219 

However, as the contours are derived from an interpolated grid it is possible that some of the original 220 

data points are not honoured using the Kriging method. One drawback of this method is that the 221 

contour plot is estimated around its edge but the lower confidence data is removed in this case by 222 

clipping the map to the Protected Property Area. 223 

Results and discussion  224 



Annual trends (2012-2014) 225 

In situ hourly groundwater temperature data recorded at discrete depths from seven boreholes (OTT 226 

Hydrometry® Orpheus Mini loggers), one river (YSI®600XLM) and one weather station (MetOffice, 227 

Bute Park) were compared for a two year period between March 2012 and February 2014, prior to the 228 

Spring 2014 baseline survey (Table  2). Data loggers in the boreholes are all installed between 3 and  229 

7 mbgl and thus are within the zone of seasonal fluctuation and will respond, with varying time lags to 230 

changes in seasonal atmospheric temperatures. Maximum air temperatures of 30.1°C were observed 231 

during July and minimum air temperatures of -4.3°C during March, averaging 10.8 °C during the 232 

study period. The latter is very similar to the 1981-2000 MetOffice average air temperature of 10.9 °C 233 

for Cardiff. The shallow in-situ river temperatures closely reflect the changes in atmospheric 234 

conditions, with maximum river temperatures of 24.9 °C recorded in July and minimum river 235 

temperatures of 2.3 °C during March. The maximum recorded in situ groundwater temperature 236 

between 2012 and 2014 was 16.1 °C, which was recorded in the unconfined sand and gravel aquifer at 237 

a depth of 4.7 m, within the Zone of Seasonal Fluctuation. The minimum groundwater temperature 238 

recorded prior to the study was 9.1 °C during April and May. Annual temperature variability recorded 239 

on in situ loggers can range from 1.1 to 6.6 °C (Table 2). During the study period, maximum 240 

groundwater temperatures are achieved 2-5 months after the peak in summer air temperature. This 241 

‘lag effect’ is generally shorter where recharge occurs to the unconfined parts of the aquifer.  Land 242 

cover and material properties such as thermal conductivity and diffusivity will also influence the time 243 

taken for groundwater within the Zone of Seasonal Fluctuation to respond to patterns in seasonal 244 

atmospheric temperature.  245 

Baseline groundwater temperature map 246 

Groundwater temperatures within the shallow aquifer are coolest during spring time (April-May).  247 

During this period the average temperature within the shallow aquifer is 12.4 °C, which is > 1 °C 248 

above the average groundwater temperature reported for England and Wales of 11.3°C (Stuart et al. 249 

2010). More than 90 % of the data in the study exceed this value. Groundwater temperatures can be 250 



predicted by applying the average UK geothermal gradient of 28 °C km-1 (Busby et al., 2011) to the 251 

local annual average air temperature of 10.9 °C (MetOffice); a line representing this predicted 252 

geothermal gradient is shown in Figure 3. However, the data clearly lie to the right of the predicted 253 

geothermal gradient and are thus warmer than predicted.   254 

The heat map (Fig. 4), which illustrates the average spring-time groundwater temperatures, illustrates 255 

that the highest groundwater temperatures are found within the city centre and surrounding high-256 

density residential areas of Riverside, Canton, Cardiff Bay, Grangetown, and industrial parts of East 257 

Moors and Leckwith. The Marl, a former landfill site located outside of the city centre, also registered 258 

above-average groundwater temperatures.  Cooler temperatures are found both on the outskirts of the 259 

city and in areas of open ground such as Cogan, Victoria Park and Cardiff Rugby Football Club 260 

(adjacent to the Millennium Stadium) suggesting land cover and land use may provide a major control 261 

on shallow groundwater temperature. 262 

Delineation of temperature zones  263 

The temperature profiles for all 168 boreholes are plotted in Figure 3.  The majority of boreholes are 264 

less than 20 mbgl, and are installed within the Quaternary aquifer. There was no pre urbanised or 265 

modern geothermal gradient available for Cardiff so the UK average geothermal gradient, of 28 °C 266 

km-1 (Busby et al., 2011), was applied.  The majority of the groundwater temperature profiles show 267 

temperatures up to 4 °C warmer than the predicted geothermal gradient. Elevated groundwater 268 

temperatures are reported in other urban aquifers and are considered to be associated with heat loss 269 

from the wider urban heat island (UHI) (e.g. Benz et al., 2015). The near subsurface has been divided 270 

into two zones the upper ‘surficial zone’ or ‘Zone of Seasonal Fluctuation’, and the lower 271 

‘Geothermal Zone’ (e.g. Parsons 1970; Anderson 2005; Banks 2008). The Zone of Seasonal 272 

Fluctuation is delineated by the area where groundwater temperatures experience annual variations.  273 

Zone of Seasonal Fluctuation  274 



It is useful to define the depth of the Zone of Seasonal Fluctuation as heat pump installers may want 275 

to locate abstraction pumps within groundwater that has year-round stable temperatures. To delineate 276 

the Zone of Seasonal Fluctuation we compared data from 15 boreholes where the Spring and Autumn 277 

profiles converge (Fig. 5). The average depth to the base of the Zone of Seasonal Fluctuation is 9.5 278 

mbgl, however this varied across the city and ranged between 7.1 and 15.5 mbgl. Developers can 279 

benefit from this information and pumping from open loop systems should, where possible be 280 

undertaken from below 15.5 mbgl to avoid temperature fluctuations associated within the Zone of 281 

Seasonal Fluctuation. The controls on the variation of the depth of the Zone of Seasonal Fluctuation 282 

are not currently defined for the city of Cardiff, however thermal diffusivity, land use, heterogeneity 283 

within the subsurface and hydrogeological heterogeneity could all contribute.  284 

Zone of Anthropogenic Influence  285 

Below the Zone of Seasonal Fluctuation ground temperature increases with depth following the UK 286 

average geothermal gradient (Busby et al. 2011). In Cardiff groundwater at 100mbgl would hence be 287 

expected to be approximately 13.7 °C. However, the shallow and deep profiles (Fig. 3) show these 288 

temperatures are encountered at much shallow depths, between 10 and 20 mbgl, offering and 289 

alternative to deeper,  more costly boreholes.  290 

It is useful to consider the maximum depth to which anthropogenic heat loss can be observed on 291 

groundwater below an urban area as this may affect the thermal recharge rate.  This zone is defined by 292 

groundwater that occurs at temperatures above that of the predicted geothermal gradient (see Banks et 293 

al. 2009).  This zone could be termed the ‘Zone of Anthropogenic Influence’ (Fig. 3).  In Cardiff the 294 

two deep borehole profiles (Borehole B and Techniquest) both converge with the predicted UK 295 

average geothermal gradient at a depth of about 70 mbgl, suggesting that anthropogenic heat loss may 296 

extend to this depth, however we cannot rule out the possibility of the ingress and mixing of shallow 297 

water via compromised borehole casing.  These profiles have similarities to a site in Gateshead, Tyne 298 

and Wear, UK (Banks et al., 2009), where a geothermal anomaly is observed to a depth of 55 m, 299 

attributed to historical downward heat leakage from the urban environment.  300 



Heat Sources  301 

Seasonal variation in groundwater temperature can be influenced by heating and cooling of the land 302 

surface (Anderson 2005), local confinement, hydraulic conductivity (Parsons 1970), specific heat 303 

capacity of the geological deposits (Banks 2008), climate change (Taylor & Stefan 2009) and 304 

proximity to potential heat sources such as sewage systems and heat loss from basements (Menberg et 305 

al. 2013). Benz et al.,  (2015) have shown a correlation between long term averaged land surface 306 

temperatures and cities with shallow groundwater tables. This study was not able to quantify the 307 

relative importance of the multiple factors that could result in elevated urban groundwater 308 

temperatures.  Multiple factors may interact to influence groundwater temperatures in Cardiff, these 309 

are illustrated on a simple conceptual model (Fig. 6). Variation of land cover (e.g. buildings, green 310 

spaces) and geology (including variations in made ground) may be the dominant control on shallow 311 

groundwater temperatures below the city. The conceptual model also illustrates other potential heat 312 

sources including; sewers and underground infrastructure, landfill, interaction with surface water 313 

bodies, canals, docks or rivers. Other factors not illustrated include; existing ground source heat 314 

systems; sustainable urban drainage systems (SuDS), exothermic microbial processes, and water-rock 315 

interactions. The contribution of deeper upwelling groundwater has also been proposed as a possible 316 

source of elevated temperatures in Cardiff (Buckley et al., 1998) due to its relative proximity to the 317 

Taffs Well thermal spring (Farr & Bottrell 2013) however there is no evidence to support this theory. 318 

Only two deep boreholes were temperature profiled; Borehole B and Techniquest (Fig. 3), and neither 319 

indicated that groundwater at depths of over 70 mbgl within the bedrock is warmer than would be 320 

predicted by the UK average geothermal gradient.  This however does not rule out the possibility of 321 

contribution for deeper groundwater but rather reflects the paucity of information on deep 322 

groundwater temperatures in the Cardiff area.  323 

Geothermal potential of existing dewatering abstractions 324 



Groundwater and its potential to support low enthalpy ground source heating has been characterised 325 

in cities including Cologne, Berlin and Munich in Germany (Menberg et al. 2013); Basel, Switzerland 326 

(Epting & Huggenberger 2013); Cork, Republic of Ireland (Allen et al. 2003); Winnipeg, Canada 327 

(Ferguson & Woodbury 2007) and Tokyo, Japan (Hayashi et al. 2009). Cardiff, like Cork and many 328 

other cities on coastal floodplains, benefits from a thermally enhanced shallow aquifer system, 329 

reducing the depth of drilling and head of water, thus increasing the efficiency of the system whilst 330 

also decreasing the overall costs of abstracting and recharging groundwater. In these settings shallow 331 

geothermal may offer cost and operational benefits over more conventional deeper systems. 332 

To produce an initial estimate of thermal capacity (G) from existing dewatering boreholes, we have 333 

used values from long-term pumping  at six dewatering abstractions (Table 3), part of the Cardiff Bay 334 

Barrage groundwater control scheme. Long term groundwater pumping data (Cardiff Harbour 335 

Authority, 1999-2016) provides evidence that abstractions at these volumes are achievable. The 336 

existing dewatering boreholes all discharge groundwater to surface water, thus information on 337 

recharge potential into the shallow aquifers is limited, and presents a knowledge gap for development 338 

of open loop systems in Cardiff.  The thermal capacity, G (W), of an open -loop borehole depends 339 

upon the volume of water, Z (l/s), that can be sustainably abstracted, the volumetric heat capacity of 340 

water, Svc (4180 J/(K-1l-1)), the starting groundwater temperature (°C), and the heat removed by a heat 341 

pump (∆t); in this case we assume a conservative value of ∆t = 3 °C, presented in this equation: 342 

G = Z x Svc x ∆t   (1) 343 

Assuming a heating demand of 15,000 kW/year for a typical three bedroom terraced house, the 344 

existing dewatering scheme operated by Cardiff Harbour Authority could supply approximately 345 

1GW/year of energy per year, heating about 74 homes. This estimate is based only upon data from six 346 

existing dewatering abstractions, and an updated hydrogeological model and better understanding of 347 

sustainable pumping rates will be required to fully realise the available resource for open loop 348 

groundwater source energy schemes, which we estimate will be several orders of magnitude greater.  349 

Conclusions 350 



This study has produced the first city-wide map of shallow groundwater temperatures in the UK, 351 

illustrating the distribution of groundwater temperatures across the city. The resulting map is of use to 352 

planners who could use this to de-risk open loop ground source heating schemes and influence 353 

developers to consider installing systems for existing buildings or new developments. Natural 354 

Resources Wales, the environmental regulator in Wales, will also benefit from the data and map to 355 

support risk based regulation, licensing and permitting of future GSHP systems. The baseline data 356 

will enable changes in groundwater temperatures to be measured against a high resolution baseline.   357 

 358 

Utilising existing monitoring borehole networks installed to monitor impoundment effects of the 359 

Cardiff Bay Barrage, temperature profiles were recorded at 1m intervals primarily within a shallow 360 

(0-20 mbgl) superficial gravel aquifer, made ground, and the upper part of the bedrock formations. 361 

The upper 20 m of the subsurface environment in Cardiff is typically 2 °C warmer than the average 362 

air temperature, suggesting localised anthropogenic enhancement of shallow groundwater 363 

temperatures. Shallow aquifers are convenient for open loop GSHP systems as this reduces both the 364 

depth required for drilling and head of water to pump, thus cost savings can be transferred to the 365 

customer via reduced installation costs and improved whole system efficiency.  366 

Maximum groundwater temperatures of 16.1 °C are observed between September and December with 367 

time lags of 2-5 months from maximum recorded air temperatures in July. Minimum groundwater 368 

temperatures of 9.1 °C occur over a shorter period between April and May, with time lags of 1-3 369 

months from minimum air temperatures. If the predicted geothermal gradient of 28 °C km-1 (Busby et 370 

al. 2011) is applied to the average annual air temperature of 10.9 °C the predicted temperature at 15m 371 

depth would be 11.2 °C. During the spring of 2014 groundwater temperature at 15 mbgl ranged from 372 

12.1 to 14.9 °C, several degrees warmer than expected. Repeat profiling of a subset of these boreholes 373 

during the warmest period of the year shows that the ‘Zone of Seasonal Fluctuation’ occurs between 0 374 

and 9.5 mbgl. Two deep boreholes profiled during the study had temperatures above the average 375 



geothermal gradient, suggesting anthropogenic heat transfer may occur to 70 mbgl slightly deeper 376 

than previously reported.   377 

The shallow groundwater system offers potential efficiencies, as groundwater warmed by the Urban 378 

Heat Island effect is stored within shallow superficial deposits and only limited drilling depths and 379 

pumping heads are required to operate a ground source heat pump. Open loop systems should abstract 380 

water below 15.5 mbgl to avoid seasonal temperature changes within the zone of seasonal fluctuation, 381 

which in Cardiff occurs in groundwater from ground level to 15.5 mbgl. The thermal capacity of six 382 

existing dewatering abstractions is enough to heat over 74 homes and the full potential is likely to be 383 

several orders of magnitude larger.  384 
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Captions for Figures 491 

 492 

Fig. 1. Location map showing superficial geology, profiled boreholes, and the Cardiff Harbour 493 

Authority groundwater control zones and protected property area. DiGMap 1:50,000 British 494 

Geological Survey © NERC. Contains Ordnance Survey data © Crown Copyright and database rights 495 

2015. 496 

 497 

 498 

 499 

 500 

 501 

 502 



 503 

Fig. 2. Schematic conceptual model for groundwater in the southern part of the city (after Edwards, 504 

1997). 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

 517 



 518 

Fig. 3. Temperature profiles of boreholes, the zone of anthropogenic influence and the zone of 519 

seasonal fluctuation compared to the UK average geothermal gradient.  520 

 521 

 522 



 523 

Fig. 4. Baseline groundwater temperature map for the City of Cardiff. Contains Ordnance Survey data 524 

© Crown Copyright and database rights 2015. 525 

 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 



 535 

Fig. 5. Spring (grey circle) and Autumn (black square) temperature profiles for 15 boreholes that are 536 

part of the Cardiff Harbour Authority groundwater monitoring scheme. The depth of the Zone of 537 

Seasonal Fluctuation is inferred where the profiles join. Black dashed line is the average UK 538 

geothermal gradient.  539 

 540 



 541 

 542 

Fig. 6. Conceptual model showing potential heat sources to groundwater in the city of Cardiff.  543 

 544 
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 550 

 551 
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Borehole ID  

 

Easting 

(m) 

Northing 

(m) 

Average 

Temperature °C 

Average Temperature below 

the ‘Zone of Seasonal 

Fluctuation’ °C* 

1/OB1  318511  174275  12.91  12.91 

1/PB1A  318484  174275  12.67  12.41 

10/OB1  318050  174202  11.37    

2/OB1  318812  174570  12.27  12.48 

2/PB1  318809  174561  12.61  12.72 

2/PB2  318851  174749  12.68  12.66 

3/OB1  318857  174859  12.85  12.85 

3/PB1A  318854  174874  12.75  12.8 

4/PB1  317766  174778  13.23  13.55 

4/PB2  317973  174828  12.78  13.21 

5/PB1  317886  175652  13.08  13.22 

5/PB2  317848  175679  12.79    

5/PB3  317776  175662  13.15  13.56 

6/OB1  317204  176190  Dry    

6/PB1  317783  175973  12.43  12.62 

6/PB2  317616  176069  12.81  13.25 

6/PB3  317415  176332  13.39  13.47 

6/PB4  317307  176228  13.61  13.15 

6/PB5  317198  176184  13.05    

7/OB1L  317147  176374  12.04    

8/OB1  316683  176653  13.37    

9/OB1L  318181  176098  13.25    

CS002  317162  175103  13.13    

CS003  317382  175027  11.91    

CS014  314592  176492  12.67    

CS018  317101  176217  13.94    

CS019A  317532  176197  11.72    

CS021  319700  176210  13.02  13.47 

CS037C  317624  173558  12.87  13.04 

CS038  317685  174736  12.75    



CS040A  318507  175448  13.01    

CS059B  316166  175666  12.07  12.18 

CS067A  318972  174669  12.63  12.95 

CS073  316354  175970  15.49    

CS074AL  315834  175882  11.97    

CS074AU  315834  175882  14.62    

CS075A  316366  176630  12.62    

CS085B  318725  174155  12.87  12.75 

CS089  317790  175951  12.33    

CS093A  317784  176123  11.03    

CS096  318483  174789  13.3    

CS107A  317483  176602  14.29    

CS108  317332  175744  12.15    

CS113  316840  173935  Dry    

CS116AL  318258  174638  13.22  13.37 

CS116AU  318258  174638  12    

CS132BU  318843  174974  <2m**    

CS133BL  320293  176158  11.34    

CS133BU  320293  176158  11.75    

CS133CL  320293  176158  11.62  12 

CS133CU  320287  176160  11.26    

Borehole ID  

 

Easting 

(m) 

Northing 

(m) 

Average 

Temperature °C 

Average Temperature below 

the ‘Zone of Seasonal 

Fluctuation’ °C* 

CS134A  315616  177038  10.64    

CS138  318062  178307  No Result***    

CS140  318235  177432  10.56    

CS149  315803  178435  11.25    

CS159AL  317873  175526  12    

CS159AU  317873  175526  <2m**    

CS169A  318841  174971  12.66  12.92 

CS171  317226  174145  Dry    

CS177AL  319071  174911  12.47  12.47 



CS177BU  319085  174905  10.31    

CS178AL  319076  174911  12.07  12.25 

CS178AU  319076  174911  <2m** 

CS207AL  316639  174699  13.1    

CS207AU  316639  174699  12.06    

CS208  316656  174705  14.03    

CS210  316285  175594  10.47    

CS211  315617  177038  9.66    

CS215  317651  174723  <2m**    

CS216  317106  176217  Dry    

CS217  318478  174785  13.58  13.72 

CS224  317495  172447  15.12    

CS225  317619  176202  Dry    

CS229  317833  175143  12.58    

CS231  317833  175142  <2m**    

CS233  318300  174920  12.07  12.5 

CS235  318299  174920  <2m**    

CS238A  318427  174553  11.82  11.86 

CS240  318419  174533  11.48    

CS241  317980  174445  12.79  12.89 

CS243A  318368  175683  11    

CS245A  318380  175704  11.34    

CS245B  318368  175683  <2m**    

CS246A  318730  175623  11.31    

CS247A  318730  175623  11.35    

CS248  318510  175193  12.94  12.81 

CS250  318513  175191  Dry    

CS251L  318581  174558  12.91  12.5 

CS253  318584  174561  <2m**    

CS254  318839  174660  12.51  12.66 

CS256  318839  174661  <2m**    

CS258A  318906  174653  <2m**    



CS259  318541  174398  12.62    

CS261  318542  174398  Dry    

CS262  318883  174325  12.11  12.54 

CS264  318882  174331  <2m**    

CS266  316841  173938  12.47  12.79 

CS268  317646  175838  12.36    

CS269  317645  175838  <2m**    

CS272  317632  174343  12.35  12.28 

CS274  319528  177162  12.62    

CS275  318177  176639  12.56    

Borehole ID  

 

Easting 

(m) 

Northing 

(m) 

Average 

Temperature °C 

Average Temperature below 

the ‘Zone of Seasonal 

Fluctuation’ °C* 

CS276  319891  174627  14.37    

CS278  318002  173967  14.62  14.4 

CS280  318002  173965  14.18    

CS283  318639  175375  12.19  12.44 

CS284  318197  177117  10.75    

CS285  314982  178077  10.12    

CS286  314970  177473  12.53    

CS287  317616  174346  <2m**    

CS292  318973  174671  Dry    

CS301L  317779  172783  11.5    

CS301U  317779  172783  13.02  12.56 

CS303L  319345  176099  12.62  12.62 

CS303U  319345  176099  Dry    

CS304L  319892  175445  13.62  13.36 

CS304U  319892  175445  13.47    

CS305L  320356  175296  12.2  12.23 

CS305U  320356  175296  12.93    

CS306  319349  174529  14.06  13.81 

CS307L  319251  174489  13.32  13.73 

CS307U  319251  174489  14.18    



CS308L  319448  174447  12.16  12.44 

CS308U  319448  174447  <2m**    

CS309L  319739  174879  12.66  12.83 

CS309U  319739  174879  <2m**    

CS310  319815  174305  12.4    

CS311CL  317360  174307  12.4  12.56 

CS311CU  317360  174307  10.62    

CS313L  317526  174252  12.71  13.11 

CS313U  317526  174252  11.56    

CS315L  316742  175703  11.78  12.06 

CS317L  318139  174388  12.68  12.71 

CS317U  318139  174388  <2m**    

CS318  317761  176618  13.24    

CS319L  316996  175324  12.14  11.93 

CS319U  316996  175324  Dry    

CS320  316754  176402  11.63    

CS321AL  315912  175514  11.69    

CS321AU  315912  175514  10.62    

CS322L  316614  175217  11.67  11.97 

CS322U  316614  175217  11.12    

CS325  319191  177151  12.18    

CS326  315544  176727  10.11    

CS327L  318850  174553  13.53  13.46 

CS327U  318850  174553  13.02    

CS328  318076  175350  12.41    

CS329  317408  175515  11.83    

CS331AL  316144  175253  13.96    

CS331AU  316144  175253  Dry    

CS332L  317494  172439  12    

CS332U  317494  172439  12.56    

CS333L  317358  172215  <2m**    

CS333U  317358  172215  12.06    



Borehole ID  

 

Easting 

(m) 

Northing 

(m) 

Average 

Temperature °C 

Average Temperature below 

the ‘Zone of Seasonal 

Fluctuation’ °C* 

CS334L  317942  176348  13.41    

CS335  317880  176242  11.36  11.31 

CS337  317372  177025  12.84    

CS339  317657  174731  <2m**    

CS340L  318154  175514  12.41    

CS340U  318154  175514  11.68    

MG023  317928  174829  11.5    

Non Cardiff Harbour Authority boreholes 

Techniquest 

(Dec 2014) 

318987  174408   13.27  13.18 

Borehole A  312384  180264  11.87  11.87 

Borehole B  318118  175722  13.9  13.85 

Borehole C  318544  175662  12.37    

Borehole D  321360  176103  Poor headworks   Poor headworks 

Borehole E  314930  178400  13.06  13.06 

Borehole F  317735  173313  12.35    

Borehole G  317719  173325  12.7  12.95 

         

 553 

 554 

Table 1. Average borehole temperature data for March 2015.  555 

 556 

 557 

 558 

 559 

 560 



 561 

 562 

 563 

 564 

 565 

Table 2. Summary of temperature variations in air, soil, surface water and groundwater during a two 566 

year monitoring period from March 2012 to February 2014. 567 

 568 

 569 

 570 

Site  Type Easting, 
Northing 

Depth 
(mbgl) 

T (°C) max T (°C) min T (°C) 
average 

T (°C) 
variation 

Bute Park Air 317609, 

177204 

Above 
ground 

30.1 Jul -4.3 Mar 10.8 34.4 

Soil 0.1 22.2 Aug 0.6 

 

Mar 
& 
Nov 

9.9 21.6 

Soil 0.3 21.5 Aug 4.3 Mar 11.4 17.2 

Soil 1.0 18.0 Jul-
Aug 

5.7 Mar 11.3 5.6 

River Taff ,  River  317743, 

176489 

1.0 24.9 Jul 2.3 Mar 11.0 22.6 

Dumballs Road  

CS248 

Groundwater, 
Confined 
Gravel 

318510, 
175193 

7.0 13.5 

 

Dec 12.4 

 

May 12.8 1.1 

Clare Road 
CS268 

Groundwater, 
Confined 
Gravel 

317646, 
175838 

5.5 13.7 

 

Oct 

 

11.8 

 

May 12.8 1.9 

Blackfriars 
CS318 

Groundwater, 
Unconfined  
Gravel 

317761, 
176618 

4.0 14.3 

 

Sept 9.1 

 

Apr 11.9 5.2 

Elm Street 

CS274 

Groundwater, 
Unconfined 
Gravel 

319528, 
177162 

4.7 16.1 

 

Sept 9.5 

 

Apr 12.8 6.6 

Mission to 
seafarers 

CS276 

Groundwater,  
Unconfined 
Made Ground 

319891, 

174627 

3.0 15.6 

 

Oct 10.8 

 

Apr 13.4 4.8 

Curran 
Embankment 

CS328B 

Groundwater,  
Unconfined 
Made Ground 

318076, 
175350 

6.5 14.9 

 

Oct 10.3 

 

May 12.7 4.6 

Cogan Leisure 
Centre  

CS333U 

Groundwater,  
Unconfined 
Bedrock 

317358, 
172215 

4.0 13.4 Oct 10.2 

 

May 11.8 3.2 



 571 

Table 3.  Estimate of shallow geothermal heat potential from existing groundwater dewatering 572 

abstractions within the City of Cardiff. 573 

Groundwater Control  

Zone

Pumping 

Rate Z (l/s
‐1
)

Specific heat 

capacity (Svc) by 

volume of water 

(J/K
‐1
l
‐1)

Drop in 

temperature 

(∆t) across  

heat pump 

(°C) 

Kilowatts  

per year 

(kWa
‐1
)

No. of 

average 3‐

bedroom 

homes

Riverside 1.1 4180 6 27588 2

Millennium Stadium 10 4180 6 250800 17

Merches  Garden 6.5 4180 6 163020 11

Central  Grangetown 5.5 4180 6 137940 9

South Butetown 11 4180 6 275880 18

The Marl 10 4180 6 250800 17
Total   1106028 74


