440 research outputs found
Efficient α-methylenation Of Carbonyl Compounds In Ionic Liquids At Room Temperature
The application of several 1-butyl-3-methylimidazolium (BMIM) salt ionic liquids as solvent in the α-methylenation of carbonyl compounds at room temperature is reported. The ionic liquid [BMIM][NTf 2] gave a clean reaction in a short time and good yields of several α-methylene carbonyl compounds. This ionic liquid was reused without affecting the reaction rates or yields over seven runs. © Georg Thieme Verlag Stuttgart.17578Stiger, K.D., Mar-Tang, R., Bartlet, P.A., (1999) J. Org. Chem, 64, p. 8409Weingarten, M.D., Skudlarek, J., Sikorski, J.A., (2006), PCT Int. Appl. WO 2006004903Mori, K., Yajima, A., Takikawa, H., (1996) Liebigs. Ann, p. 891Picman, A.K., (1986) Biochem. Syst. Ecol, 14, p. 255Schmidt, T.J., (1999) Curr. Org. Chem, 3, p. 577Basavaiah, D., Rao, A.J., Satyanarayana, T., (2003) Chem. Rev, 103, p. 811Kagan, H.B., Riant, O., (1992) Chem. Rev, 92, p. 1007Huang, C.G., Chang, B.R., Chang, N.C., (2002) Tetrahedron Lett, 43, p. 2721Clososki, G.C., Milagre, C.D.F., Moran, P.J.S., Rodrigues, J.A.R., (2007) J. Mol. Catal. B: Enzym, 48, p. 70Boehm, H.M., Handa, S., Pattenden, G., Roberts, L., Blake, A.J., Li, W.-S., (2000) J. Chem. Soc., Perkin Trans. 1, p. 3522Takano, S., Inomata, K., Samizu, K., Tomita, S., Yanase, M., Suzuki, M., Iwabuchi, Y., Ogasawara, K., (1989) Chem. Lett, 1283Lappert, M.F., (2005) J. Organomet. Chem, 690, p. 5467Kraus, G.A., Kim, J., (2004) Synthesis, p. 1737Blazejewski, J.C., Anselmi, E., Wernicke, A., Wakselman, C., (2002) J. Fluorine Chem, 117, p. 161Hin, B., Majer, P., Tsukamoto, T., (2002) J. Org. Chem, 67, p. 7365Nadolski, G.T., Davidson, B.S., (2001) Tetrahedron Lett, 42, p. 797Abellán, T., Chinchilla, R., Galindo, N., Guillena, G., Nájera, C., Sansano, J.S., (2000) Eur. J. Org. Chem, p. 2689Hon, Y.S., Chang, F.J., Lu, L., (1994) J. Chem. Soc., Chem. Commun, p. 2041Hon, Y.S., Chang, F.-J., Lu, L., Lin, W.C., (1998) Tetrahedron, 54, p. 5233Hon, Y.S., Chen, H.F., (2007) Tetrahedron Lett, 48, p. 8611Hon, Y.S., Hsieh, C.H., (2006) Tetrahedron, 41, p. 9713Hon, Y.S., Hsieh, C.H., Liu, Y.W., (2005) Tetrahedron, 61, p. 2713Hon, Y.S., Liu, Y.W., Hsieh, C.H., (2004) Tetrahedron, 60, p. 4837For the total synthesis of brevetoxin B (second to last step), see: (a) Nicolaou, K. C.Rutjes, F. P. J. T.Theodorakis, E. A.Tiebes, J.Sato, M.Untersteller, E. J. Am. Chem. Soc. 1995, 117, 1173Nicolaou, K.C., Reddy, K.R., Skokotas, G., Fuminori, S., Xiao, X.-Y., (1992) J. Am. Chem. Soc, 114, p. 7935. , See also: bCrimmins, M.T., Stanton, M.G., Allwein, S.P., (2002) J. Am. Chem. Soc, 124, p. 5958. , For the total synthesis of laulimalide, see: cAhmed, A., Hoegenauer, E.K., Enev, V.S., Hanbauer, M., Kaehlig, H., Ohler, E., Mulzer, J., (2003) J. Org. Chem, 68, p. 3026Pinnatoxin, A., Ishiwata, A., Sakamoto, S., Noda, T., Hirama, M., (1999) Synlett, p. 692Rodrigues, J.A.R., Siqueira-Filho, E.P., de Mancilha, M., Moran, P.J.S., (2003) Synth. Commun, 33, p. 331Durand, J., Teuma, E., Gómez, M., (2007) C. R. Chim, 10, p. 152Lee, S., (2006) Chem. Commun, p. 1049Sheldon, R.A., (2005) Green Chem, 7, p. 267Davies, J.H., (2004) Chem. Lett, 33, p. 1033Song, C.E., (2004) Chem. Commun, p. 1033Milagre, C.D.F., Milagre, H.M.S., Santos, L.S., Lopes, M.L.A., Moran, P.J.S., Eberlin, M.N., Rodrigues, J.A.R., (2007) J. Mass Spectrom, 42, p. 1287Parvulescu, V.I., Hardacre, C., (2007) Chem. Rev, 107, p. 2615Welton, T., (1999) Chem. Rev, 99, p. 2071Wasserscheid, P., Keim, W., (2000) Angew. Chem. Int. Ed, 39, p. 3773Wilkes, J.S., (2002) Green Chem, 4, p. 73Gu, D.-G., Ji, S.-J., Jiang, Z.-Q., Zhou, M.-F., Loh, T.-P., (2005) Synlett, p. 959Harjani, J.R., Nara, S.J., Salunkhe, M.M., (2002) Tetrahedron Lett, 43, p. 1127Akaiyama, T., Suzuki, A., Fuchibe, K., (2005) Synlett, p. 1024Ranu, B.C., Banerjee, S., Das, A., (2006) Tetrahedron Lett, 47, p. 881Ranu, B.C., Banerjee, S., (2005) Org. Lett, 7, p. 3049Ranu, B.C., Jana, R., (2006) Eur. J. Org. Chem, p. 3767Ranu, B.C., Banerjee, S., Jana, R., (2007) Tetrahedron, 63, p. 776Xu, J.-M., Qian, C., Liu, B.-K., Wu, Q., Lin, X.-F., (2007) Tetrahedron, 63, p. 986Paul, A., Samanta, A., (2007) J. Phys. Chem. B, 111, p. 1957Ranu, B.C., Banerjee, S., (2005) Org. Lett, 7, p. 3049Meciarová, M., Toma, S., Kotrusz, P., (2006) Org. Biomol. Chem, 4, p. 1420Carmichael, A.J., Earle, M.J., Holbrey, J.D., McCormac, P.B., Seddon, K.R., (1999) Org. Lett, 1, p. 997Wang, R., Xiao, J., Twamley, B., Shreeve, J.M., (2007) Org. Biomol. Chem, 5, p. 671Yadav, J.S., Reddy, B.V.S., Gayathri, K.U., Prasad, A.R., (2003) New J. Chem, 27, p. 1684Hajipour, A.R., Rafiee, F., Ruoho, A.E., (2007) Synlett, p. 1118Akike, J., Yamamoto, Y., Togo, H., (2007) Synlett, p. 2168Lancaster, N.L., Llopis-Mestre, V., (2003) Chem. Commun, p. 2812Mehnert, C.P., Dispenziere, N.C., Cook, R.A., (2002) Chem. Commun, p. 1610Chiappe, C., Piccioli, P., Pieraccini, D., (2006) Green Chem, 8, p. 277Santos, L.S., Neto, B.A.D., Consorti, C.S., Pavam, C.H., Almeida, W.P., Coelho, F., Dupont, J., Eberlin, M.N., (2006) J. Phys. Org. Chem, 19, p. 731Yang, X.-F., Wang, M., Varma, R.S., Li, C.-J., (2003) Org. Lett, 5, p. 657Zhao, G., Jiang, T., Gao, H., Han, B., Huang, J., Sun, D., (2004) Green Chem, 6, p. 75Eckstein, M., Filho, M.V., Liese, A., Kragl, U., (2004) Chem. Commun, p. 1084Lou, W., Zong, M., Smith, T.J., (2006) Green Chem, 8, p. 147Gamba, M., Lapis, A.A.M., Dupont, J., (2008) Adv. Synth. Catal, 350, p. 160Zhang, C.Z., (2006) Adv. Catal, 49, p. 153Jain, N., Kumar, A., Chauban, S., Chauban, S.M.S., (2005) Tetahedron, 61, p. 1015Cassol, C.C., Eberling, G., Ferrera, B., Dupont, J., (2006) Adv. Synth. Catal, 324, p. 243Dupont, J., (2004) J. Braz. Chem. Soc, 15, p. 341Rosa, J.N., Afonso, C.A.M., Santos, A.G., (2001) Tetrahedron, 57, p. 4189Kumar, A., Pawar, S.S., (2003) J. Mol. Catal. A: Chem, 208, p. 33Marsh, K.N., Boxall, J.A., Lichtenthaler, R., (2004) Fluid Phase Equilibria, 219, p. 93Jiang, Y.-Y., Wang, G.-N., Zhou, Z., Wu, Y.-T., Geng, J., Zhang, Z.-B., (2008) Chem. Commun, p. 505Pihko, P.M., Erkkila, A., (2006) J. Org. Chem, 71, p. 2538Spectroscopic Data for Ethyl 3-Methylene-2-oxo-4-phenylbutanoate (1) 1H NMR (300 MHz, CDCl3, δ, 1.36 (t, 3 H, J, 9 Hz, 3.65 (s, 2 H, 4.35 (q, 2 H, J, 9 Hz, 5.98 (s, 1 H, 6.23 (s, 1 H, 7.25 (m, 5 H, 13C NMR (75.5 MHz, CDCl3, δ, 14.0, 35.7, 62.2, 126.5, 128.6, 129.2, 133.1, 137.6, 144.4, 163.9, 188.1. MS: m/z, 218 (5, M, 189 (4, 145 (43, 117 (100, 115 (76, 91 (40, 65 (18, 51 (19, Spectroscopic Data for Ethyl 2-Methylene-3-oxo-3-phenylpropionate(2) 1H NMR (300 MHz, CDCl3, δ, 1.10 (t, 3 H, J, 7.1 Hz, 4.19 (q, 2 H, J, 7.2 Hz, 6.2 (s, 1 H, 6.65 (s, 1 H, 7.44 (d, 2 H, J, 7.2 Hz, 7.52 (t, 1 H, J, 7.3 Hz, 7.84 (d, 2 H, J, 7.2 Hz, 13C NMR (75.5 MHz, CDCl3, δ, 14.0, 61.5, 128.5, 129.4, 131.3, 133.5, 136.3, 141.5, 164.0, 193.0. MS: m/z, 204 11, MYamauchi, M., Katayama, S., Watanabe, T., (1982) Synthesis, p. 935Hon, Y.-S., Hsu, T.-R., Chen, C.-Y., Lin, Y.-H., Chang, F.-J., Hsieh, C.-H., Szu, P.-H., (2003) Tetrahedron, 59, p. 1509Chatani, N., Kamitani, A., Oshita, M., Fukumoto, Y., Murai, S., (2001) J. Am. Chem. Soc, 123, p. 1268
Technical and economic pre-feasibility study for the construction of septic tank-filter-sinkhole with alternative material
Received: February 2nd, 2021 ; Accepted: August 3rd, 2021 ; Published: August 24th, 2021 ; Correspondence: [email protected] study of the different materials used in the construction of septic tanks aims to
facilitate and spread the use of this sewage treatment system in places that are not assisted by
municipal sewage systems and in the rural area, which despite having a smaller number of
inhabitants compared to the urban area This study aims to carry out a technical and economic
evaluation of the concrete and tires using in the construction of septic tanks-filter-sinkhole. The
wastewater treatment systems were built according to the recommendations in NBR 7229/93 and
13969/97. To evaluate the efficiency of each system built, the following parameters were
analyzed: chemical oxygen demand (COD), the potential of hydrogen (pH), alkalinity, acidity,
and temperature. In the economic evaluation, the materials and labor required to install the
systems were considered using the Brazilian cost database (SINAPI), and an economic and
financial feasibility study was carried out. According to the technical and economic analysis of
construction, both systems showed the same technical performance, however, the concrete design
proved to be more advantageous than the tire design, considering the difficulty in acquiring the
tires and the high cost if it is necessary to buy them, in addition to the greater difficulty in handling
and installing the tire system compared to the concrete one
Produtividade e vigor do maracujazeiro-amarelo plantado em covas e plantio direto sob manejo orgânico.
O objetivo deste trabalho foi avaliar o vigor e a produtividade do maracujazeiro-amarelo plantado em diferentes tamanhos de cova e plantio direto sob manejo orgânico. O experimento foi conduzido de 2005 a 2007, no Setor de Agricultura Ecológica da Universidade Federal do Acre, em delineamento de blocos casualizados, constituídos de cinco tratamentos, quatro repetições e quatro plantas por parcela. Foram avaliados cinco tipos de preparo do solo: T1 cova do tamanho do torrão (0,19 x 0,063m) com adubação em cobertura; T2 cova de 0,30 x 0,30 x 0,30m com adubação de plantio na cova; T3 cova de 0,30 x 0,30 x 0,30m com adubação de plantio em cobertura; T4 cova de 0,50 x 0,50 x 0,50m com adubação de plantio na cova; e T5 cova de 0,50 x 0,50 x 0,50m com adubação de plantio em cobertura. O tamanho da cova e o plantio direto não influenciaram o vigor da planta e a biomassa de raízes. O número de frutos por planta e a produtividade, na segunda e na somatória das duas safras, foram maiores com plantio direto e com covas cúbicas de 0,30m. Após dois anos de cultivo, a densidade do solo foi maior na camada de 0-5cm de profundidade num raio de 20cm da planta para o plantio em covas de 0,50m com adubação na cova e menor para o plantio direto, não havendo diferença entre os demais tratamentos. O plantio direto ou o plantio em covas pequenas com dimensões de 0,30 x 0,30 x 0,30m proporcionou maior produtividade de maracujá que o plantio em covas maiores, mesmo não influenciando o vigor das plantas e a massa seca de raízes
An improved method for measuring muon energy using the truncated mean of dE/dx
The measurement of muon energy is critical for many analyses in large
Cherenkov detectors, particularly those that involve separating
extraterrestrial neutrinos from the atmospheric neutrino background. Muon
energy has traditionally been determined by measuring the specific energy loss
(dE/dx) along the muon's path and relating the dE/dx to the muon energy.
Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in
dE/dx values is quite large, leading to a typical energy resolution of 0.29 in
log10(E_mu) for a muon observed over a 1 km path length in the IceCube
detector. In this paper, we present an improved method that uses a truncated
mean and other techniques to determine the muon energy. The muon track is
divided into separate segments with individual dE/dx values. The elimination of
segments with the highest dE/dx results in an overall dE/dx that is more
closely correlated to the muon energy. This method results in an energy
resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This
technique is applicable to any large water or ice detector and potentially to
large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure
- …