452 research outputs found

    Predicting university performance in psychology: the role of previous performance and discipline-specific knowledge

    Get PDF
    Recent initiatives to enhance retention and widen participation ensure it is crucial to understand the factors that predict students' performance during their undergraduate degree. The present research used Structural Equation Modeling (SEM) to test three separate models that examined the extent to which British Psychology students' A-level entry qualifications predicted: (1) their performance in years 1-3 of their Psychology degree, and (2) their overall degree performance. Students' overall A-level entry qualifications positively predicted performance during their first year and overall degree performance, but negatively predicted their performance during their third year. Additionally, and more specifically, students' A-level entry qualifications in Psychology positively predicted performance in the first year only. Such findings have implications for admissions tutors, as well as for students who have not studied Psychology before but who are considering applying to do so at university

    M-theory on `toric' G_2 cones and its type II reduction

    Full text link
    We analyze a class of conical G_2 metrics admitting two commuting isometries, together with a certain one-parameter family of G_2 deformations which preserves these symmetries. Upon using recent results of Calderbank and Pedersen, we write down the explicit G_2 metric for the most general member of this family and extract the IIA reduction of M-theory on such backgrounds, as well as its type IIB dual. By studying the asymptotics of type II fields around the relevant loci, we confirm the interpretation of such backgrounds in terms of localized IIA 6-branes and delocalized IIB 5-branes. In particular, we find explicit, general expressions for the string coupling and R-R/NS-NS forms in the vicinity of these objects. Our solutions contain and generalize the field configurations relevant for certain models considered in recent work of Acharya and Witten.Comment: 45 pages, references adde

    The hydrology of glacier-bed overdeepenings : sediment transport mechanics, drainage system morphology, and geomorphological implications

    Get PDF
    Evacuation of basal sediment by subglacial drainage is an important mediator of rates of glacial erosion and glacier flow. Glacial erosion patterns can produce closed basins (i.e., overdeepenings) in glacier beds, thereby introducing adverse bed gradients that are hypothesised to reduce drainage system efficiency and thus favour basal sediment accumulation. To establish how the presence of a terminal overdeepening might mediate seasonal drainage system evolution and glacial sediment export, we measured suspended sediment transport from Findelengletscher, Switzerland during late August and early September 2016. Analyses of these data demonstrate poor hydraulic efficiency of drainage pathways in the terminus region but high sediment availability. Specifically, the rate of increase of sediment concentration with discharge was found to be significantly lower than that anticipated if channelised flow paths were present. Sediment availability to these flow paths was also higher than would be anticipated for discrete bedrock-floored subglacial channels. Our findings indicate that subglacial drainage in the terminal region of Findelengletscher is dominated by distributed flow where entrainment capacity increases only marginally with discharge, but flow has extensive access to an abundant sediment store. This high availability maintains sediment connectivity between the glacial and proglacial realm and means daily sediment yield is unusually high relative to yields exhibited by similar Alpine glaciers. We present a conceptual model illustrating the potential influence of ice-bed morphology on subglacial drainage evolution and sediment evacuation mechanics, patterns and yields, and recommend that bed morphology should be an explicit consideration when monitoring and evaluating glaciated basin sediment export rates

    Ether- and Ester-Bound iso-Diabolic Acid and Other Lipids in Members of <i>Acidobacteria</i> Subdivision 4

    Get PDF
    Recently, iso-diabolic acid (13,16-dimethyl octacosanedioic acid) has been identified as a major membrane-spanning lipid of subdivisions 1 and 3 of the Acidobacteria, a highly diverse phylum within the Bacteria. This finding pointed to the Acidobacteria as a potential source for the bacterial glycerol dialkyl glycerol tetraethers that occur ubiquitously in peat, soil, lakes, and hot springs. Here, we examined the lipid composition of seven phylogenetically divergent strains of subdivision 4 of the Acidobacteria, a bacterial group that is commonly encountered in soil. Acid hydrolysis of total cell material released iso-diabolic acid derivatives in substantial quantities (11 to 48% of all fatty acids). In contrast to subdivisions 1 and 3 of the Acidobacteria, 6 out of the 7 species of subdivision 4 (excepting “Candidatus Chloracidobacterium thermophilum”) contained iso-diabolic acid ether bound to a glycerol in larger fractional abundance than iso-diabolic acid itself. This is in agreement with the analysis of intact polar lipids (IPLs) by high-performance liquid chromatography-mass spectrometry (HPLC-MS), which showed the dominance of mixed ether-ester glycerides. iso-Diabolic acid-containing IPLs were not identified, because these IPLs are not released with a Bligh-Dyer extraction, as observed before when studying lipid compositions of subdivisions 1 and 3 of the Acidobacteria. The presence of ether bonds in the membrane lipids does not seem to be an adaptation to temperature, because the five mesophilic isolates contained a larger amount of ether lipids than the thermophile “Ca. Chloracidobacterium thermophilum.” Furthermore, experiments with Pyrinomonas methylaliphatogenes did not reveal a major influence of growth temperature over the 50 to 69°C range

    Guidelines for the Selection of Physical Literacy Measures in Physical Education in Australia

    Get PDF
    Assessment of physical literacy poses a dilemma of what instrument to use. There is currently no guide regarding the suitability of common assessment approaches. The purpose of this brief communication is to provide a user's guide for selecting physical literacy assessment instruments appropriate for use in school physical education and sport settings. While recommendations regarding specific instruments are not provided, the guide offers information about key attributes and considerations for the use. A decision flow chart has been developed to assist teachers and affiliated school practitioners to select appropriate methods of assessing physical literacy. School PE and sport scenarios are presented to illustrate this process. It is important that practitioners are empowered to select the most appropriate instrument/s to suit their needs

    The High Energy Telescope for STEREO

    Get PDF
    The IMPACT investigation for the STEREO Mission includes a complement of Solar Energetic Particle instruments on each of the two STEREO spacecraft. Of these instruments, the High Energy Telescopes (HETs) provide the highest energy measurements. This paper describes the HETs in detail, including the scientific objectives, the sensors, the overall mechanical and electrical design, and the on-board software. The HETs are designed to measure the abundances and energy spectra of electrons, protons, He, and heavier nuclei up to Fe in interplanetary space. For protons and He that stop in the HET, the kinetic energy range corresponds to ∌13 to 40 MeV/n. Protons that do not stop in the telescope (referred to as penetrating protons) are measured up to ∌100 MeV/n, as are penetrating He. For stopping He, the individual isotopes 3He and 4He can be distinguished. Stopping electrons are measured in the energy range ∌0.7–6 MeV

    Defining Physical Literacy for Application in Australia: A Modified Delphi Method

    Get PDF
    Purpose. The development of a physical literacy definition and standards framework suitable for implementation in Australia. Method. Modified Delphi methodology. Results . Consensus was established on four defining statements: Core – Physical literacy is lifelong holistic learning acquired and applied in movement and physical activity contexts; Composition – Physical literacy reflects ongoing changes integrating physical, psychological, cognitive and social capabilities; Importance – Physical literacy is vital in helping us lead healthy and fulfilling lives through movement and physical activity; Aspiration – A physically literate person is able to draw on their integrated physical, psychological, cognitive, and social capacities to support health promoting and fulfilling movement and physical activity, relative to their situation and context, throughout the lifespan. The standards framework addressed four learning domains (physical, psychological, cognitive, and social), spanning five learning configurations/levels. Conclusion. The development of a bespoke program for a new context has important implications for both existing and future program

    Mesoscopic scattering in the half-plane: squeezing conductance through a small hole

    Full text link
    We model the 2-probe conductance of a quantum point contact (QPC), in linear response. If the QPC is highly non-adiabatic or near to scatterers in the open reservoir regions, then the usual distinction between leads and reservoirs breaks down and a technique based on scattering theory in the full two-dimensional half-plane is more appropriate. Therefore we relate conductance to the transmission cross section for incident plane waves. This is equivalent to the usual Landauer formula using a radial partial-wave basis. We derive the result that an arbitrarily small (tunneling) QPC can reach a p-wave channel conductance of 2e^2/h when coupled to a suitable reflector. If two or more resonances coincide the total conductance can even exceed this. This relates to recent mesoscopic experiments in open geometries. We also discuss reciprocity of conductance, and the possibility of its breakdown in a proposed QPC for atom waves.Comment: 8 pages, 3 figures, REVTeX. Revised version (shortened), accepted for publication in PR

    Engineering of B800 bacteriochlorophyll binding site specificity in the Rhodobacter sphaeroides LH2 antenna.

    Get PDF
    The light-harvesting 2 complex (LH2) of the purple phototrophic bacterium Rhodobacter sphaeroides is a highly efficient, light-harvesting antenna that allows growth under a wide-range of light intensities. In order to expand the spectral range of this antenna complex, we first used a series of competition assays to measure the capacity of the non-native pigments 3-acetyl chlorophyll (Chl) a, Chl d, Chl f or bacteriochlorophyll (BChl) b to replace native BChl a in the B800 binding site of LH2. We then adjusted the B800 site and systematically assessed the binding of non-native pigments. We find that Arg-10 of the LH2 ÎČ polypeptide plays a crucial role in binding specificity, by providing a hydrogen-bond to the 3-acetyl group of native and non-native pigments. Reconstituted LH2 complexes harbouring the series of (B)Chls were examined by transient absorption and steady-state fluorescence spectroscopies. Although slowed 10-fold to ~6 ps, energy transfer from Chl a to B850 BChl a remained highly efficient. We measured faster energy-transfer time constants for Chl d (3.5 ps) and Chl f (2.7 ps), which have red-shifted absorption maxima compared to Chl a. BChl b, red-shifted from the native BChl a, gave extremely rapid (≀0.1 ps) transfer. These results show that modified LH2 complexes, combined with engineered (B)Chl biosynthesis pathways in vivo, have potential for retaining high efficiency whilst acquiring increased spectral range
    • 

    corecore