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Abstract

Evacuation of basal sediment by subglacial drainage is an important mediator of rates

of glacial erosion and glacier flow. Glacial erosion patterns can produce closed basins

(i.e., overdeepenings) in glacier beds, thereby introducing adverse bed gradients that

are hypothesized to reduce drainage system efficiency and thus favour basal sedi-

ment accumulation. To establish how the presence of a terminal overdeepening

might mediate seasonal drainage system evolution and glacial sediment export, we

measured suspended sediment transport from Findelengletscher, Switzerland during

late August and early September 2016. Analyses of these data demonstrate poor

hydraulic efficiency of drainage pathways in the terminus region but high sediment

availability. Specifically, the rate of increase of sediment concentration with

discharge was found to be significantly lower than that anticipated if channelized

flow paths were present. Sediment availability to these flow paths was also higher

than would be anticipated for discrete bedrock-floored subglacial channels. Our

findings indicate that subglacial drainage in the terminal region of Findelengletscher

is dominated by distributed flow where entrainment capacity increases only

marginally with discharge, but flow has extensive access to an abundant sediment

store. This high availability maintains sediment connectivity between the glacial and

proglacial realm and means daily sediment yield is unusually high relative to yields

exhibited by similar Alpine glaciers. We present a conceptual model illustrating the

potential influence of ice-bed morphology on subglacial drainage evolution and

sediment evacuation mechanics, patterns and yields, and recommend that bed

morphology should be an explicit consideration when monitoring and evaluating

glaciated basin sediment export rates.
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1 | INTRODUCTION

Rates and patterns of subglacial erosion and glacier-bed evolution

likely depend very strongly on the effectiveness of processes that

transport and evacuate erosion products from the glacial system

(Hooke, 1991; Alley et al., 2003, 2019; Cook et al., 2020). Inefficient

evacuation of erosion products should promote sediment storage in

the form of till deposits that shield bedrock from direct erosion

(Hooke, 1991; Alley et al., 2003). Such deposits will also influence

rates of glacier flow by permitting soft-sediment deformation to
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contribute to rates of basal slip (Iverson et al., 1995). Nonetheless,

knowledge of subglacial transport processes and their effectiveness is

lacking (Jaeger & Koppes, 2016; Alley et al., 2019), particularly for

ice-marginal areas that mediate the supply of glacial products to the

proglacial realm (Alley et al., 1997; Porter et al., 2019). For example,

sediment export rates from glacial systems appear inherently variable

across space and time (e.g., Hallet et al., 1996; Riihimaki et al., 2005;

Koppes et al., 2015; Delaney et al., 2018), leading to uncertainty

regarding the utility of sediment budget studies and the relation

between true subglacial bedrock erosion rates and those estimated

from measured sediment yields (Koppes & Montgomery, 2009;

Hilger & Beylich, 2019). These uncertainties combine to limit our

understanding of the response of glacial and proglacial systems to

future climate change.

The wide application of proglacial stream sediment loads as

proxies for subglacial bedrock erosion rates (e.g., Gurnell et al., 1996;

Hallet et al., 1996) reflects the accepted dominance of fluvial trans-

port in glacial sediment budgets. Orders of magnitude variation in

such proxy erosion rates between glaciers of similar size (e.g., Hallet

et al., 1996; Cook et al., 2020) indicates that seasonal melt volume

and drainage efficiency (e.g., Koppes et al., 2015; Alley et al., 2019;

Cook et al., 2020) are important sediment evacuation controls. None-

theless, temporal analyses of sediment export records have identified

numerous possible entrainment processes (e.g., Gurnell et al., 1992;

Willis et al., 1996; Anderson et al., 1999; Riihimaki et al., 2005; Swift

et al., 2005a), and our understanding of key evacuation mechanisms

and their drivers remains incomplete (Jaeger & Koppes, 2016).

Notably, field studies have observed contrasting seasonal evacuation

dynamics. On the one hand, many glaciers exhibit sediment-export

exhaustion, meaning annual loads are dominated by synoptic early

season (‘first-flush’) melt events (e.g., Fenn, 1987; Collins, 1989,

1990; Riihimaki et al., 2005; Gimbert et al., 2016) during periods of

inefficient (i.e., ‘distributed’) subglacial drainage. On the other hand,

certain studies have indicated increasing sediment availability

(e.g., Clifford et al., 1995; Swift et al., 2005a; Perolo et al., 2019), such

that annual loads are dominated by summer-period diurnal melt cycles

that supply hydraulically efficient subglacial channels.

This study addresses the hypothesis that glacier bed morphology

critically influences sediment export processes, patterns, and rates

because it exerts a key control on subglacial drainage system mor-

phology (cf. Hooke, 1991; Alley et al., 2003; Cook & Swift, 2012). For

positively sloping glacier beds, abundant surface melt produced during

the summer leads to the evolution of hydrologically efficient

(i.e., channelized) subglacial drainage paths (Shreve, 1972; Nienow

et al., 1998) that theoretically have prodigious transport capacity

(Alley et al., 1997). In contrast, less efficient (i.e., distributed) forms of

drainage should persist where glacier beds are strongly inclined in the

opposing direction (Röthlisberger & Lang, 1987; Hooke, 1991; Alley

et al., 2003), meaning substantive basins (‘overdeepenings’) in glacier

and ice sheet beds should accumulate till deposits (Hooke, 1991;

Cook & Swift, 2012). Such overdeepenings are common in the

ablation areas of temperate ice masses (e.g., Swift et al., 2018), where

surface melt is believed to promote focused and effective subglacial

bedrock erosion (e.g., Hooke, 1991; Herman et al., 2011; Egholm

et al., 2012; Patton et al. 2016). Theoretical studies confirm that over-

deepenings promote less efficient forms of subglacial drainage

(e.g., Creyts et al., 2013; Werder, 2016), and a handful of field studies

have provided further insights (see Cook & Swift, 2012). Notably,

studies of an overdeepened section of Storglaciären, Sweden have

indicated inefficient subglacial drainage comprising poorly linked

water pockets above a layer of till (Hooke & Pohjola, 1994), and the

persistent englacial routing of surface melt (Hooke et al., 1988;

Fountain et al., 2005).

To address the hypothesis that adverse bed slopes are a first-

order control on subglacial drainage morphology and the processes of

sediment entrainment and evacuation, we have monitored and

analysed suspended sediment transport in the proglacial stream of

Findelengletscher, Switzerland (Figure 1). At the time of our study,

F I G U R E 1 (a) Study location. (b) Ice
thickness (colour scale) and bed
topography (contours) of the ablation and
terminus area in 2015 (Feiger et al., 2018)
obtained by ground-penetration radar
(GPR) survey. Bed and ice surface elevation
in 2015 along profile X–Y (red) is shown in
(c). (d) Ortho-image of the terminus in
September 2016 (this study) obtained by
unmanned aerial vehicle (UAV) survey.
Annotations highlight features described in
the text; bed topography (contours) are as
shown in (b). The discharge portal in 2016
was located at 46�00’32.9"N, 7�49’42.9"E.
A water intake structure where discharge
measurements were obtained is located at
46�00’24.1"N, 7�48’42.7"E
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field data (Figure 1) indicated that the terminus of this relatively steep

Alpine glacier was situated within an overdeepened section of the

glacier bed. Because temperate glacier drainage system evolution is

typically driven by synoptic changes in melt volume at the melt season

start (cf. Nienow et al., 1998; Swift et al., 2005b), the system at

Findelengletscher at the time of the study was assumed to have

reached a stable late-season configuration.

Our primary objective was to elucidate drainage system morphol-

ogy within the terminal region by characterizing discharge-velocity

(or discharge-entrainment) relationships using analyses of discharge

and sediment transfer records (cf. Müller & Förstner, 1968; Alley

et al., 1997; Swift et al., 2005a; see Study Area and Methods section).

A secondary objective was to analyse temporal variability in transport

to explore auxiliary entrainment processes. Similar approaches have

been applied widely in fluvial research (e.g., Cudden & Hoey, 2003),

and have been foundational in developing insights into the structure

and behaviour of relatively inaccessible subglacial drainage systems

(e.g., Sharp, 1991; Richards et al., 1996). Our data and findings serve

to address the imbalance in observations of sediment export from

glaciers with and without overdeepened beds, and we advance a

general model of drainage evolution and sediment export that likely

explains some of the previously observed spatial and temporal

variability in glacial erosion rates and sediment yields. Nonetheless,

the elucidation of small-scale subglacial processes in the absence of

direct access to the glacier bed remains a considerable challenge

(cf. Sharp, 1991; Stone & Clarke, 1996).

2 | STUDY AREA AND METHODS

Suspended sediment transport in the proglacial stream at

Findelengletscher was monitored during August and September 2016.

Monitoring was conducted as close as practicable to the discharge

portal (Figures 1 and 2) to negate modification of glacial sediment

export patterns by proglacial entrainment and deposition processes

(e.g., Bogen, 1980; Holmlund et al., 1996; Stott et al., 2008; Leggat

et al., 2015; Guillon et al., 2017; Mao et al., 2019; Perolo et al., 2019).

Bedload transport was not monitored due to the impracticalities

of deploying conventional bedload sampling (e.g., Cudden &

Hoey, 2003). Discharge from the portal was turbid (Figure 2a,b),

indicating the routing of flow along the glacier bed. An ice-penetrating

radar study aimed at resolving the ice-bed topography was

undertaken in 2015 (Feiger et al., 2018) and has revealed numerous

overdeepenings (Figure 1b). This included a c. 500 m-long

overdeepened section beneath the terminus region that may have

comprised several sub-basins (Figure 1c). The presence of this

‘terminal overdeepening’ was confirmed by further radar surveys in

2016 and 2017 (Swift et al., in prep). Since 2017, thinning of ice in the

area shown in Figure 1(d) has led to rapid terminus retreat (M. Huss,

pers. comm.; GLAMOS, 2020).

Transport was monitored at 10 s intervals and stored as 1-min

averages using two Partech IR15C turbidity sensors (Figure 2b). Daily

manual samples were also obtained and filtered in the field using pre-

weighed 0.45 μm Whatman CN filter papers to permit later conver-

sion of turbidity values to gravimetric concentration units (by means

of the calibration relationship shown in Figure 2d). Exaggerated stage

variability due to the narrow channel width resulted in the turbidity

sensors being exposed at periods of low flow. In addition, blocks of

glacier ice up to several metres (longest axis) that were periodically

flushed from the portal mouth frequently became entrapped by the

sensor mountings (Figure 2a), meaning sensor deployment had to be

refined mid-study (Figure 2c). The turbidity records were therefore

later checked to remove erroneous values after linearly rescaling each

record using minimum and maximum values recorded in the field.

Values were further rejected during periods of inconsistent sensor

behaviour (defined as sensor-to-sensor output diverging by > 15%)

and the rescaled records (e.g., Figure 3a) were then averaged

(Figure 3b). Specification of an appropriate turbidity calibration rela-

tionship (Figure 2d) included application of a correction to address

suspected under-sampling of suspended material by the manual sam-

ple obtained at the highest flow stage (see Supporting Information).

To infer drainage system morphology, we analysed the relation-

ship between discharge (Qw) and suspended sediment concentration

(ϕs) (cf. Müller & Förstner, 1968; Asselman, 2000). Fluvial transport

F I GU R E 2 (a) The glacier portal and
measurement location used until 23 August
2016. (b) The turbidity sensors as mounted
in (a). (c) The portal and refined sensor
arrangement, employing separate movable
structures, used from 24 August 2016
(note the stationary ice-block). (d) The
turbidity calibration relationship obtained
from instantaneous turbidity values and
corresponding gravimetric values obtained
from dried, field-filtered samples. Values on
the % Turbidity axis represent the mean
value of both sensors after rescaling the
individual turbidity records using minimum
and maximum values recorded in the field
(see text)
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capacity is determined largely by flow velocity, which at a

defined flow cross-section is a function of discharge (Müller &

Förstner, 1968). The general empirical equation ϕs = a � Qw
b has

therefore been applied widely in fluvial environments

(e.g., Rickenmann, 2001; Morehead et al., 2003; Swift et al., 2005a). In

this context, parameters a and b are empirically derived and express

the availability of sediment and the rate of increase of the erosive

power of the flow, respectively (Müller & Förstner, 1968;

Asselman, 2000). This relationship was plotted using calibrated values

from the 1-min turbidity record and corresponding values from a

15-min record of instantaneous discharge (courtesy of Grande

Dixence S.A.) measured c. 1.63 km downstream of the portal

(Figure 1). Values were further filtered to include only those where

the individual sensor values agreed to within 5% of their operating

range. Further, to avoid underestimation of relationship parameters,

concentration values were obtained by calibrating the highest

corresponding turbidity value from either sensor (in preference to the

averaged value of both sensors). Finally, time values for the discharge

record required adjustment to account for the travel time of water to

the intake structure. Using a notable fall in stage witnessed at the por-

tal on 23 August at 17:00 h, this travel time was estimated to be c.

30 min.

To address the secondary objective of understanding auxiliary

sediment transfer processes, we analysed the nature of short-lived

(< 1 h) sediment ‘flushes’ (or ‘pulses’, cf. Collins, 1979) that occur

independently of changes in discharge and that are common

in proglacial sediment transport records (e.g., Gurnell &

Warburton, 1990). Such phenomena have potential to provide insight

into evacuation mechanisms that may reflect drainage system

morphology (e.g., Gurnell et al., 1992; Swift et al., 2005a), although

they also have importance because they may weaken or bias observed

relationships between suspended sediment transport and discharge

(e.g., Fenn et al., 1985). An automated procedure was used to identify

flush event start-, peak- and end-points (Figure 3b), and to permit

analysis of flush characteristics, including time-of-day, magnitude, and

shape (the latter value being the ratio of rising-limb to falling-limb

length in minutes, cf. Gurnell & Warburton, 1990). Our procedure ini-

tially identifies possible flushes by flagging increases in concentration

that exceed a manually chosen value in g l�1 s�1 (the ‘flush threshold

value’, see Results section). Further details of the procedure are

provided in the Supporting Information.

3 | RESULTS

Suspended sediment concentration and discharge during the moni-

tored period are shown in Figure 4 and paired discharge and concen-

tration values are shown in Figure 5(a). The latter dataset comprised

278 values that covered 81% of the discharge range during the moni-

tored period (Figure 6). The paired discharge–concentration values

were fitted with an equation with the form ϕs = a � Qw
b (Figure 5a;

see Study Area and Methods section). The paired values did not

appear to be noticeably biased towards the rising or falling limbs of

the discharge record (Figure 4), and the values demonstrated a

reasonably homoscedastic distribution about the fitted curve

(Figure 5a). Slightly increased scatter on the concentration axis at dis-

charge values exceeding c. 8 m3 s�1 (Figure 5a) was the result of some

values coinciding with short-lived ‘flushes’ (Figure 5b; see later), but

the number of values thus affected appears to be small. None of the

concentration values were found to coincide with discharge lows

F I G U R E 3 (a) Typical turbidity time
series. ‘No data’ indicates a gap in both
records resulting from turbidity exceeding
the operating range of both sensors.
(b) The final calibrated record
(i.e., suspended sediment concentration)
over the same time period as in (a). The
panel also shows sediment flushes
identified using a flush threshold value of
0.15 (see text for definition). The flush at c.
14:00 h is excluded from our flush analyses
(see text) because the data gap means that
the timing of the flush peak cannot be
determined

F I GU R E 4 Discharge and suspended sediment time series during the monitored period. Gaps in the sediment time series are explained in the
text. The asterisk (*) indicates a sediment flush at c. 17:00 h on 23 August 2016 (see text). Discharge was measured at a water intake structure
downstream of the glacier (see text) and the circumflex accent (^) indicates a typical discharge anomaly caused by automated purging of sediment
from that structure
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caused by ‘purges’ of the water intake structure (Figure 4), and only

12 values (4%) were within 20 min of a sediment flush peak, as identi-

fied by the automated method (see later). The results of this analysis

demonstrated a discharge–concentration relationship b coefficient of

0.52 (Figure 5a). Further analysis of the relationship for each of

10 individual diurnal discharge cycles, where n (the number of paired

discharge–concentration values) exceeded 10, demonstrated a mean

daily b value of 0.55 � 0.23 and no discernible temporal trend in the

magnitude of b.

Flush frequency was dependent on the chosen flush threshold

value (Figure 7). A threshold value of 0.05 identified 260+ flushes and

this number declined to 209 using a value of 0.15. Using the latter

threshold, mean flush length was 9.1 min. Flush frequency did not

appear to vary with discharge stage, and flushes were only slightly

more common during periods of rising stage (Figure 7a). Nonetheless,

flushes during periods of falling stage were typically > 33% larger

(Figure 7b) and had steeper rising limbs (Figure 7c). Mean flush shape

(i.e., rising-limb to falling-limb length ratio) was also notably different

during rising versus falling stage (ratio values of 1.32 and 0.78, respec-

tively). However, only the very largest flushes were notably asymmet-

rical (ratio values < 0.5). Analysis of sediment concentration values at

flush start-, peak- and end-points indicated that flushes were respon-

sible, on average, for a 14% increase in sediment load (i.e., above the

load ‘underlying’ the flush peak).

4 | DISCUSSION

4.1 | Morphology of the drainage system in the

terminus region

For glaciers with positively inclined beds, strong summer diurnal melt

cycles motivate the development of channelized drainage that domi-

nates subglacial water routing beneath the ablation area

(cf. Röthlisberger, 1972; Nienow et al., 1998). Such ice-confined chan-

nels cannot adjust their dimensions to accommodate rapid diurnal

changes in melt (cf. Röthlisberger, 1972; Gimbert et al., 2018), mean-

ing changes in flow discharge must be accommodated dominantly by

changes in flow velocity. In these circumstances, Alley et al. (1997)

have shown that the bedload equation developed by Bagnold (1980)

leads us to expect that the dependence of sediment transport on dis-

charge will be extremely strong, up to Qs / Qw
9/2 (which, converting

load to concentration, means ϕs / Qw
7/2). The relationship ϕs / Qw

1/2

that we observed at Findelengletscher (Figure 5a) indicates a b value

that is confidently < 1 and is therefore inconsistent with expectations

for channelized flow. It is also inconsistent with data for mountain

rivers analysed by Müller and Förstner (1968), where b was > 2. Only

lowland rivers observed by Müller and Förstner (1968) had values

< 2, including the Seerhein, which is the outflow of upper Lake

Constance, Switzerland/Germany, where b = 0.

F I GU R E 5 (a) Relationship of the form ϕs = a � Qw
b for paired values of discharge (Qw) and suspended sediment concentration (ϕs) at

Findelengletscher (n = 278; p < 0.01). Symbols are coloured according to the date of the corresponding diurnal discharge cycle (day/month) in
2016. (b) Part of the plot area shown in (a) that includes values on 1 September 2016 (filled circles) for which sediment concentration exceeded
8 g l�1, and, below, a time series plot of discharge and concentration on the same date. Vertical lines in the time series plot indicate the timing of
paired values shown in (a); yellow vertical lines correspond to the filled circles in the plot above and show that the latter occurred during
substantive sediment flushes

F I GU R E 6 Frequency plots of (a) all
discharge values during the monitored
period; and (b) discharge values coinciding
with values from both sensors that do not
diverge by > 5% of sensor range. Discharge
values in all plots have been aggregated
into 0.5 m3 s�1 bins
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The formation of hydraulically efficient channelized subglacial

drainage during the summer is commonplace at temperate glaciers,

and such systems are widely regarded as the dominant sediment

transfer mechanism within glacial systems (e.g., Alley et al., 1997;

Herman et al., 2011). However, on adverse bed slopes, theoretical

work predicts that channel water pressures should tend toward ice

overburden pressure, meaning channelized drainage should ‘collapse’,

causing flow to distribute across the glacier bed (Röthlisberger &

Lang, 1987; Hooke, 1991; Alley et al., 1998; Creyts & Clark, 2010).

Both Hooke (1991) and Alley et al. (2003) proposed that the accompa-

nying collapse in transport capacity should result in fluvial sediment

deposition and therefore till accumulation on the adverse slope, caus-

ing the adverse slope gradient to tend toward the threshold slope for

re-establishment of channelized drainage (e.g., Alley et al., 1998).

Thus, sediment connectivity between the glacial–proglacial system

will be maintained, but erosion of bedrock will be suppressed within

the overdeepening and, most notably, on the adverse slope.

Distributed forms of drainage are characterized by slow transit

velocities (e.g., Nienow et al., 1998) and a positive relationship

between discharge and water pressure (e.g., Kamb, 1987), which

dictate that changes in flow discharge are accommodated partly by

growth in system cross-section area. Examples include the

enlargement of basal cavities or other water-filled pockets that form

part of a linked-cavity system (e.g., Iken & Bindschadler, 1986),

increased canal incision into basal sediments (e.g., Kyrke-Smith &

Fowler, 2014), or by increased depth of water in a basal ‘sheet’

(e.g., Creyts & Schoof, 2009). Assuming such systems were to accom-

modate changes in discharge by roughly equal adjustments in flow

depth, width and velocity, the analysis of Alley et al. (1997) anticipates

Qs / Qw
2 (which, by conversion, means ϕs / Qw

1.3). A remarkably sim-

ilar relation of ϕs / Qw
1.2 (Figure 8) was observed by Swift

et al. (2005a) during the early melt season at Haut Glacier d’Arolla,

Switzerland, when subglacial flow was dominated by distributed path-

ways. The relation was observed to switch to ϕs / Qw
2.3 following

establishment of a channelized subglacial drainage system, evidenced

by rapid system flow velocities measured using dye tracing (Swift

et al., 2005b).

The relation for Findelengletscher is shown in Figure 8 alongside

example empirical relations for the two system types observed at

Haut Glacier d’Arolla (Swift et al., 2005a). A hypothetical relation

where ϕs / Qw
7/2 (Alley et al., 1997; see earlier) is also shown. In

addition to differences in b, Figure 8 illustrates differences in

a (the intercept value) that reflect relative differences in sediment

availability (e.g., Müller & Förstner, 1968; Asselman, 2000). With

respect to the period of distributed drainage at Haut Glacier d’Arolla,

the availability difference means that sediment concentrations at

Findelengletscher at equivalent discharges to those at Haut Glacier

d’Arolla were almost an order of magnitude greater.

Temporal changes in a were observed by Swift et al. (2005a) at

Haut Glacier d’Arolla both prior to and after the switch from

distributed to channelized drainage. Decreases in a during the period

of distributed drainage were argued to result from depletion of basal

F I G U R E 8 Relationships between discharge and sediment
concentration at Findelengletscher (this study) and Haut Glacier
d’Arolla (subperiods 4 and 6 of the 1998 melt season, from Swift
et al., 2005a). The relations have the form ϕs = a � Qw

b (see text) and
are plotted over the range of values observed during each study and
for all p < 0.01. The relation proposed by Alley et al. (1997) (see text)
is plotted using an arbitrary intercept value. Findelengletscher is twice
as large as Haut Glacier d’Arolla in terms of area of ice cover, meaning
summer discharge minima and maxima at Findelengletscher are, in
comparison, higher

F I GU R E 7 Flush characteristics and their sensitivity to the choice
of flush threshold value in g l�1 s�1 (see text). Error bars indicate one
standard deviation from the mean
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sediment sources accumulated since the end of the preceding melt

season, with increases in a argued to reflect enhanced disturbance of

basal sources and distributed pathways during ‘spring’ basal-slip

events (cf. Mair et al., 2002). Changes in a during the period of

channelized drainage were positive and correlated with diurnal

discharge-cycle amplitude. This implied that sediment availability was

later linked to the strength (and therefore spatial influence) of a diur-

nally reversing hydraulic gradient that operated between channels

and adjacent areas of distributed drainage (Swift et al., 2005a, 2005b).

This feature of subglacial hydrology arises from diurnal over-

pressurization of channels by surface melt, and is referred to as the

‘variable pressure axis’, or VPA (Hubbard et al., 1995; Nienow

et al., 2005; Davison et al., 2019). A similar pattern of increasing sedi-

ment availability at Haut Glacier d’Arolla was also observed by Perolo

et al. (2019). Because b is inconsistent with channelized drainage, we

conclude that high sediment availability at Findelengletscher

(expressed by the high value of a) reflects access of a distributed

system to copious sources of sediment at the glacier bed.

Empirical studies have further shown that sediment transport in

mountain and glacier streams is typically characterized by strong

clockwise hysteresis and a significant bedload component

(e.g., Liestøl, 1967; Gurnell, 1987). Clockwise hysteresis is associated

with flow in discrete channels because near- or in-channel sediment

sources are typically supply-limited and exhausted rapidly as discharge

rises (e.g., Bogen, 1980; Riihimaki et al., 2005; Gimbert et al., 2018).

Diurnal hysteresis is particularly pronounced in subglacial streams

because rising flows will expand to access areas of bed where glacial

bedrock erosion has replenished sediment flushed by the previous

high flow (Liestøl, 1967). In addition, strong velocity and turbulence

hysteresis in confined subglacial channels should dictate rapid

entrainment of in-channel sediment deposited by preceding high

flows (e.g., Richards, 1982; Bombar, 2016; Khuntia et al., 2019).

Discrete channels also have high competence and therefore bedload

transport may represent one-third to two-thirds of the total sediment

load (e.g., Østrem, 1975; Gurnell, 1987; Hallet et al., 1996;

Riihimaki et al., 2005). Our analyses of transport time series at

Findelengletscher indicates the absence of clockwise hysteresis in

suspended sediment transport (Figure 9), and, though we did not

quantify bedload transport, qualitative observations indicated bedload

transport rates were uncharacteristically low.

The discharge of ice blocks from the portal (e.g., Figure 2c) was

frequent and this too may be indicative of drainage system morphol-

ogy (cf. Collins, 1979). Blocks were occasionally observed to be

ejected after collapse events from inside the portal that were audible

to witnesses, though such events were never visible because of the

low nature of the portal roof (Figure 2). Nonetheless, block emergence

was not always preceded by an audible event, meaning events may

have originated some distance inside the portal. These events were

presumed to result from the collapse of ice from the roofs of englacial

or subglacial drainage paths, meaning such paths were likely to have

been unusually broad.

4.2 | Significance of sediment flushes for sediment

load and drainage morphology

Short-lived flushes of sediment unrelated to discharge variability are

common in sediment transport records from glacial drainage systems

(e.g., Willis et al., 1996). The increase in sediment load associated with

each flush (see Results section) indicates that the proportion of total

load evacuated by flush activity during the monitored period was

likely only c. 7%. A not dissimilar estimate of 9% was reported by

Gurnell and Warburton (1990). Nonetheless, identification of flush

origin could provide independent support for our interpretation of

subglacial drainage system morphology (above). Previously proposed

subglacial mechanisms of flush generation include temporary flow

diversion events (caused, for example, by blocking of channels by col-

lapsed ice; e.g., Collins, 1990), collapse of unstable soft-sediment

channel margins (e.g., Collins, 1979), increases in flow through areas

of distributed drainage (for example, during rainfall; e.g., Raymond

et al., 1995), the rapid formation or reorganization of drainage flow

paths (Collins, 1989, 1990; Anderson et al. 1999; Riihimaki

et al., 2005), and ‘disturbance’ of the basal zone (for example, by

glacier advance or rapid basal-slip events; e.g., Gurnell et al., 1988;

Gurnell, 1995; Willis et al., 1996; Swift et al., 2005a).

Most studies have attributed flushes to subglacial (rather than

proglacial) sources, but attribution is almost always speculative

because of the inaccessible nature of glacier beds. A notable analysis

of 571 flushes over a 22-day period at Glacier de Tsidjiore Nouve,

Switzerland by Gurnell and Warburton (1990) could attribute only a

F I GU R E 9 Discharge–concentration
plots for days during 2016 at
Findelengletscher (calibrated values, sensor
1 only) showing absence of clear clockwise
hysteresis. Arrows show direction of time.
Peak discharge on each day occurred at c.
18:00 h
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few flushes to ‘glacial’ (rather than proglacial) sources. Flushes

observed by Collins (1979) at Gornergletscher, Switzerland were very

likely subglacial, nonetheless, because they were associated with the

evacuation of cobble-sized pieces of ice from the drainage portal.

Collins (1979) thus suggested these flushes occurred due to channel

migration, which fractured the basal ice. Flushes observed to occur in

association with changes in ice motion can also be confidently

identified as subglacial in origin. At Variegated Glacier, Alaska,

sediment flushes occurred during periods of enhanced basal slip asso-

ciated with surging (Humphrey et al., 1986; Kamb & Engelhardt, 1987;

Humphrey & Raymond, 1994); at Midtdalsbreen, Norway, flushes that

were independent of discharge occurred shortly after peaks in glacier

motion (Willis et al., 1996); and observations at two Alaskan glaciers

by Raymond et al. (1995) demonstrated that flushes occurred simulta-

neously with ice motion events during periods of rainfall.

The numerous sediment transport studies undertaken at Haut

Glacier d’Arolla between 1982 and 1998 (e.g., Gurnell et al., 1992;

Clifford et al., 1995; Swift et al., 2005a) are unusual in that proglacial

stream monitoring for these studies has typically been undertaken very

close to the terminus (within c. 100 m), meaning there is high confi-

dence that flushes are subglacial in origin. Curiously, these studies

reveal longer-term periods of enhanced flushing in the early melt

season (so-called ‘spring’ or ‘first-flush’ events; cf. Fenn, 1987), but

reveal only sparse evidence of the short-lived flush events observed so

commonly by this study and at Gornergletscher by, for example,

Collins (1979). For example, short-lived flushes identified by Swift

et al. (2005a) from large positive residuals in the discharge–sediment

concentration relationships mainly occurred (a) during a period of

frequent rainfall (subperiod 7 in 1998), and (b) following rapid basal

‘slip’ events associated with a longer (several day) ‘spring’ motion event

(subperiod 2) during the period of distributed subglacial drainage.

The small number of flushes at Glacier d’Tsidjiore Nouve

considered by Gurnell and Warburton (1990) to be of glacial origin

were strongly asymmetric in form, having notably steeper rising

limbs than falling limbs. Such asymmetry would appear consistent

with the hysteresis effect that would likely arise if a sediment

source were accessed by a discrete channel (Bogen, 1980).

Likewise, only a few of the flushes observed at Findelengletscher

were strongly asymmetric (i.e., shape value < 0.5), and, of these,

one (Figure 10) was witnessed by observers at the portal. The

event was notable for having occurred during a steep rise in stage

that followed an unexpected discharge decline, and for being

accompanied by the evacuation of numerous ice blocks. The event

was therefore interpreted to be the result of temporary obstruction

of part of the drainage system by ice collapse. Post hoc analysis of

the time series data to identify similar ‘discharge-disruption’ flush

events found only 13 possible events, which represented only c.

6% of all flushes identified using a threshold value of 0.15.

Most flushes observed at Findelengletscher were instead near-

symmetric (see Results section) with the range of shape values being

consistent with those of flushes at Glacier de Tsidjiore Nouve that

Gurnell and Warburton (1990) attributed to proglacial sources.

Gurnell and Warburton (1990) were able to reproduce such flushes in

the field by manual addition of fine sediment to the stream. Impor-

tantly, manual addition of sediment in this way means entrainment

would not have been characterized by hysteresis that would be

expected when channelized flows interact with a sediment source

(see earlier). This leads us to similarly conclude that most flushes at

Findelengletscher – though clearly subglacial in origin – were inconsis-

tent with channelized drainage. The equal number of flushes observed

on rising and falling discharge limbs at Findelengletscher is also consis-

tent with flush numbers observed by Gurnell and Warburton (1990).

However, falling limb flushes at Findelengletscher were larger than

observed by Gurnell and Warburton (1990), meaning flush magnitude

patterns did not exhibit diurnal hysteresis characteristic of exhaustion

of sources accessed by channelized flow (Liestøl, 1967). This leads us

to conclude that contrasting mechanisms may be responsible for

flushes occurring on rising-discharge versus falling-discharge flow.

This discussion further indicates the possibility that distributed

and channelized systems exhibit distinctive flush forms and frequen-

cies, with channelized drainage (e.g., as at Haut Glacier d’Arolla)

exhibiting low flush frequency and chiefly asymmetric flush-form. If

channel-bank collapse accounts for the majority of such flushes within

channelized systems, the paucity of such events at Haut Glacier

d’Arolla is perhaps unsurprising given that substantial sediment cliffs

adjacent to channels are likely rare in the subglacial environment. Fur-

ther, we argue that such collapse would most likely occur during

undercutting by rising flows, and that the collapsed material would

be less likely to be mobilized during falling flows. Flushes at

Findelenglestcher do not conform to this pattern because the larger

flushes occur on the falling discharge limb. Further, bank collapse is

highly unlikely within distributed systems, where flow depths are very

small. We conclude that flush origin at Findelengletscher is most likely

a ‘basal-disturbance’ process in the presence of high sediment

availability.

F I G U R E 1 0 Sediment concentration and discharge on the
afternoon of 23 August 2016, showing a notable flush event (lighter
grey lines, showing extent of agreement between the two sensors)
preceded by an unusual decline in discharge (thick black line).
Concentration at the flush peak is unknown and the inferred peak
(annotated) has been interpolated from the rate of change of
concentration measured prior to and after the peak. Minimum and
maximum stage during the event were witnessed at the glacier
terminus at approximately 17:00 and 17:30 h, in agreement with the
discharge record. Peak sediment concentration occurred at c. 17:15 h
during the rapid rise in discharge prior to the subsequent ‘flood’ peak
and was associated with the discharge of ice blocks and slush
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4.3 | Synthesis and mechanistic model

We draw together our key results and discussion to propose a

conceptual mechanistic model of drainage and sediment evacuation

processes at Findelengletscher (Figure 11).

Our key findings are inconsistent with channelized subglacial

drainage. First, the discharge-suspended sediment concentration

relationship indicated high sediment availability and unusually weak

dependence of flow velocity on discharge; second, the symmetric

form of flushes appeared to be inconsistent with a sediment source

being accessed by a discrete flow (cf. Gurnell & Warburton, 1990);

and third, clear hysteresis was absent from flush magnitude patterns

and the discharge–sediment concentration plots (Figures 7 and 9).

From this we infer that terminal region subglacial drainage at

Findelengletscher was predominantly via distributed pathways

(Figure 11), where variation in discharge was accommodated largely

by adjustment in system cross-sectional area. Because the observed

dependence of sediment concentration on discharge (i.e., ϕs / Qw
1/2)

was weaker than that observed for distributed drainage at Haut

Glacier d’Arolla (i.e., ϕs / Qw), it is possible that system enlargement

included exploitation of englacial flow paths (Figure 11D). Nonethe-

less, high sediment concentrations imply persistent subglacial flow,

meaning adjustments in cross-sectional area change may have been

achieved by, for example, canal incision into basal sediments, or

increased ice-bed separation (i.e., water ponding).

Occasional large asymmetric flushes that were accompanied by

discharge variability and ice block evacuation were consistent with

those at Gornergletscher attributed by Collins (1979) to flow path

blockages caused by tunnel-roof collapse. At Findelengletscher, these

ice blocks were frequently too large to have been evacuated through

a distributed system, therefore it would seem that the collapse events

occurred in broad, low-roofed channels that connect the distributed

system with the portal (Figure 11F). Such events might also have

occurred within englacial conduits, which may also have been

unusually broad if they were ‘graded’ to the overdeepening ‘lip’

(cf. Fountain & Walder, 1998). However, because most flushes were

near-symmetric, flush form further supports the existence of

distributed subglacial drainage. We propose that flushes on the rising

discharge limb that were lower in magnitude reflected pressurized

expansion of distributed flow across the soft-sediment bed (cf. Swift

et al., 2005a). We further advance that the larger and slightly more

asymmetric flushes that characterized flushing on the falling limb (see

Results section) indicate a different mobilization mechanism; for

example, basal disturbance resulting from the re-coupling of areas of

the glacier sole with the soft-sediment bed as discharge (and hence

the ‘thickness’ of the subglacial water layer and ice-bed separation)

declines. Finally, the qualitative observation of limited bedload

transport relative to suspended load is consistent with low-

competency flow paths emerging from an overdeepened glacier bed

(e.g., Pearce et al., 2003).

4.4 | Significance of bed morphology for drainage

mechanics and sediment yields

Ongoing warming of global climate is likely to increase sediment

yields from glaciated basins in coming decades because glacier retreat

provides a melt ‘dividend’ (e.g., Kaser et al., 2010; Huss &

Hock, 2018) that is likely to enhance rates of sediment evacuation

(Koppes & Montgomery, 2009; Lane & Nienow, 2019; Delaney &

Adhikari, 2020) and possibly, therefore, rates of subglacial bedrock

erosion too (e.g., Alley et al., 2019). Nonetheless, observed variabilities

in glacier sediment yields (see Introduction section) indicate that

crucial driving factors remain poorly understood (e.g., Jaeger &

Koppes, 2016). Notably, subglacial environments have been argued to

lack potential for sediment storage sufficient to influence yields over

decadal timescales (Riihimaki et al., 2005), and many studies have

emphasized the supply-limited nature of subglacial streams on

account of strong hysteresis in discharge–sediment transport relation-

ships (e.g., Riihimaki et al., 2005; Koppes et al., 2015; Gimbert

et al., 2016). However, closed-basin bedrock topography beneath

mountain glaciers is abundant (e.g., Frey et al., 2010; Linsbauer

et al., 2016; Colonia et al., 2017) and could greatly influence subglacial

drainage efficiency and sediment storage potential.

Delaney et al. (2018) observed that discharge availability failed to

capture recent decadal evolution of catchment sediment export at

both Gornergletscher and Aletschgletscher and further observed that

yield-based erosion rate estimates for both catchments were only

30–50% of typical rates for glaciers of the Swiss Alps (�1 mm a�1).

Comparison of likely daily August 2016 export rates at

Findelengletscher indicated by our dataset with similar estimates from

1993 presented by Barrett and Collins (1997) indicates the same

decadal variability. Using equipment installed in the water intake

structure (Figure 1), Barrett and Collins (1997) reported mean

‘late August’ suspended sediment fluxes of 529 t d�1. In contrast,

our observed discharge–sediment concentration relation for

Findelengletscher in 2016 (Figure 5) indicates mean daily late-August

suspended sediment loads of c. 2.5 kt d�1. Assuming the observed

discharge–sediment concentration relation can be applied at

Findelengletscher throughout 2016, the total annual suspended

sediment load from the glacier in that year would have been c. 189 kt.

F I GU R E 1 1 Inferred drainage paths and their configuration in
the ablation area of a temperate valley glacier with a terminal
overdeepening. The diagram emphasizes the switch from channelized
to distributed subglacial drainage, which is associated with the
presence of adverse slopes (A and C). Not all features are necessarily
present at Findelengletscher. A: distributed drainage on the adverse
slopes of overdeepenings; B: channelized drainage on normal slopes
connecting overdeepenings; C: distributed drainage and deposited
sediment occupying the terminal overdeepening; D and E: possible
subglacial-to-englacial drainage connections that may fully or partly
span the overdeepened area (direct routes are indicated, but the
routes may be tortuous; for example, as a result of exploiting englacial
debris septa or fractures); F: channelized englacial and subglacial
paths feeding the portal
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The latter value would correspond to an effective erosion rate

(cf. Hallet et al., 1996) of c. 5 mm a�1 if assuming a bedrock density of

2.7 g cm�3 (Nishiyama et al., 2019) and glacier area of 13 km2 (Feiger

et al., 2018). Such a value greatly exceeds regional rock uplift rates

and local rates indicated by sediment yields (e.g., Stutenbecker

et al., 2018; Delaney et al., 2018). Decadal variability might therefore

be explained by retreat causing terminal zone processes to be

conditioned, periodically, by areas of overdeepening.

Several detailed studies of sediment export from Gornergletscher

motivate further insightful discussion that implicates overdeepening-

related conditioning of sediment export rates and processes. Like

Findelengletscher, Gornergletscher is significantly longer than Haut

Glacier d’Arolla, and the bed appears to contain several over-

deepenings (e.g., Iken et al., 1996; Delaney et al., 2019). Collins (1979)

observed frequent flush activity at Gornergletscher that – based on

our inferences at Findelengletscher – might indicate the absence of

channelized drainage in the terminal region. Ice-block discharge

events were observed to accompany flushes at Gornergletscher

(Collins, 1979), which at Findelengletscher we attribute to

roof-collapse of broad channels that connect the distributed system

with the portal. In addition, many studies at Gornergletscher

(e.g., Collins, 1989) have demonstrated remarkably different seasonal

patterns of sediment evacuation to that observed at Haut Glacier

d’Arolla. Though both glaciers exhibit so-called ‘first-flush’ events

(e.g., Fenn et al., 1985), which typically last several days, sediment

export from Gornergletscher thereafter declines. At Haut Glacier

d’Arolla, in contrast, an initial exhaustion effect attributable to the

inception of discrete channels is later reversed by the establishment

of variable pressure axes surrounding such channels (Swift

et al., 2005a). Thus, we hypothesize that suppression by bed topogra-

phy of the seasonal development of a channelized system like that

observed at Haut Glacier d’Arolla is a possible explanation for

apparent seasonal sediment exhaustion at Gornergletscher.

Proglacial processes are clearly an additional factor that

modulates catchment export rates (e.g., Lane et al., 2017), and studies

such as Delaney et al. (2018), Collins (1979) and Barrett and

Collins (1997) were undertaken using measurements obtained from

intake structures below extensive proglacial areas. Nonetheless, our

discussion of observations at Findelengletscher indicates that decadal

and seasonal patterns of sediment export from glacier systems are

likely mediated very strongly by bed morphology and its influence on

glacial sediment storage and subglacial drainage efficiency. These

implications are summarized in Figure 12 for ice masses in steady

state (Figure 12, panel i) and at stages of retreat (Figure 12, panel ii).

As shown in Figure 12 (panels i–iii), all glaciers are expected to

exhibit spring peaks in sediment export (i.e., so-called ‘first-flush’

events) because rapidly expanding distributed systems access sedi-

ment that has accumulated since the end of the previous melt season

(e.g., Collins, 1989; Swift et al., 2005a). However, the spring peak may

be larger for glacial systems with suppressed subglacial drainage effi-

ciency (Figure 12, panel ii) because of greater year-to-year storage

potential for subglacial sediment. Thereafter, ice-bed morphology

dictates one of two seasonal sediment export patterns: (1) increasing

export arising from highly efficient channelized drainage with abun-

dant access to basal sediment sources (Figure 12, panel i) because of

the development of strong variable pressure axes focused on major

F I GU R E 1 2 Generalized conceptual model of seasonal and decadal subglacial drainage evolution and suspended sediment export patterns
from the terminal zone of a temperate ice mass. Panels (i)–(iii) show implications of areas of positive and adverse bed slope for spring–summer
drainage morphology, evolution of discharge–sediment concentration relationships, and seasonal evolution of sediment export rate. The three-
dimensional ‘models’ illustrate drainage system morphological characteristics and sediment layer thickness; ice and water flow in each model is
from upper-right to lower-left. In the schematic bivariate and time series plots below, ϕs is sediment concentration, Qw is discharge, and Qs is
load, with each bivariate plot representing a specific time-point (time point 1 to time point 3) on the time series plot below. Panel (i) shows
development of efficient channelized drainage by time point 2, which leads to an initial fall in load following the ‘spring’ peak because flow in
discrete channels initially has limited access to subglacial sediment sources (Alley et al., 1997). Rates subsequently increase to reach a higher peak
shortly after time point 3 as the increasing peakedness of summer diurnal supraglacial runoff cycles establishes a strong diurnally reversing
hydraulic gradient (Swift et al., 2005a, 2005b). Panel (ii) shows how suppression of efficient drainage by an adverse bed slope, resulting in an
inefficient system of cavities or canals, means the seasonal pattern is dominated by exhaustion of winter accumulated sediment sources. Panel
(iii) shows the implications of complete early-season exhaustion of the winter-accumulated subglacial sediment store prior- or simultaneous-to
the formation of efficient channels
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channels (see earlier); or (2) declining export (apparent exhaustion)

due to the absence of channels and their associated VPAs (Figure 12,

panel ii), or perhaps even complete exhaustion of the basal sediment

layer in the presence of channels (Figure 12, panel iii). In over-

deepened situations, complete exhaustion might occur because flow

enlarges alternative englacial flow paths, diverting flow from the bed,

or because of sediment evacuation by subglacial canals. The latter

could result in decreased transport capacity both by increasing

subglacial system cross-section area and by increasing the magnitude

of the adverse slope gradient.

Figure 13 considers the implications for decadal export patterns

and yields, which will clearly depend on adverse slope characteristics

(Hooke, 1991; Alley et al., 2003), but also overdeepening location

within the glacier system. We propose that overdeepenings will have

the greatest influence on catchment yields and downstream sediment

signals during retreat of the margin over the basin (Figure 13, stages

3 and 4), because of the abundance of melt will combine with highest

subglacial sediment availability. Comparatively, stabilization of the

terminus beyond an overdeepening (stages 1 or 2) may reduce yields,

especially if the adverse slope is steep, meaning the overdeepening

acts as a subglacial sediment sink. The existence of such a sediment

store may not be apparent to proglacial sediment monitoring efforts

because transport will be conditioned by flow in near-terminus

channels. Many details of the model are, however, uncertain because

of limited theoretical and field observations. For example, field

observations have indicated a tendency for drainage to ‘avoid’ over-

deepenings via establishment of englacial or lateral flow paths

(e.g., Fountain, 1994; Spedding & Evans, 2002; Fountain et al., 2005),

meaning stores may be protected from evacuation during retreat. Fur-

ther studies of drainage routing during retreat are therefore needed.

5 | CONCLUSION

Inferential studies of the processes of sediment evacuation from

glaciers have been biased towards glacier systems that have non-

overdeepened beds, studies where the ice-bed topography has not

been explicitly considered, or studies where the monitoring location

for sediment was downstream of large proglacial zones. For this study,

monitoring was conducted near to the portal of a glacier with an

overdeepened terminal area to address the hypothesis that glacier

bed morphology was a key control on sediment evacuation rates and

processes because of its perceived implications for subglacial drainage

system efficiency and morphology. Our analyses of the acquired data

provide the following conclusions:

• Sediment concentration (ϕs) varied proportionally with discharge

(Qw) such that exponent b in the relation ϕs = a � Qw
b was < 1. This

finding is inconsistent with observations of sediment transport in

typical mountain streams and also inconsistent with theoretical

expectations of transport within subglacial channels, which

indicate b > 2 (e.g., Alley et al., 1997).

• The finding ϕs / Qw
0.5 indicates highly distributed subglacial drain-

age in the terminal region of Findelengletscher. For comparison,

b = 1.3 was observed during the period of distributed drainage at

Haut Glacier dArolla (Swift et al., 2005a) and is the value

anticipated for drainage systems in which variation in discharge is

accommodated by equal adjustment in flow width, depth, and

velocity (cf. Alley et al., 1997).

• The finding of b < 1 indicates that discharge was associated with

minimal adjustment in flow velocity and was accommodated

largely by adjustment in system cross-sectional area. Such

adjustment may therefore have included exploitation of englacial

pathways, rapid incision into a soft-sediment bed, or floatation of

the ice (i.e., ponding of water at the glacier bed), but such details

remain unknown.

• The intercept (a value) of the discharge–sediment concentration

relationship at Findelengletscher indicates remarkable sediment

availability. This availability is responsible for a late-summer glacial

suspended sediment export rate that is estimated to be c. 2.5 kt

d�1. Such high availability is likely maintained by storage within the

terminal overdeepening and the highly distributed nature of

water flow.

• Sediment flushes (or ‘pulses’) that were unrelated to discharge

were frequent, and the form and temporal characteristics of most

flushes were inconsistent with channelized flow. Only a few large

pulses were associated with changes in discharge that implicate

flow blocking by collapse of broad ice-roofed channels.

• Our analyses of flush form indicated that flushes were generated

by disturbance of the basal environment and reflective of subtly

different disturbance mechanisms on rising versus falling discharge

limbs. We speculate that flushes on rising limbs were generated by

canal incision into soft-sediment and on falling limbs by re-coupling

of ice with the soft-sediment bed.

F I GU R E 1 3 Glacier retreat in the presence of overdeepened bedrock topography (shown as five stages, 1–5) means sediment export
patterns to the proglacial zone will be conditioned by the proximity of subglacial basins (i.e., overdeepenings) to the glacier terminus zone and
their sediment fill level. Downstream discharge–concentration relationships will be conditioned by drainage style in the terminal area and –

depending on basin-fill level and basin proximity to the glacier terminus – sediment export to the proglacial area may be enhanced by the
recycling of basin sediment or inhibited by basin filling. Here, retreat is shown to occur into a full basin, but temporary proglacial lake formation
could instead occur if the rate of glacial sediment export during retreat is sufficiently low. Annual load symbols indicate deviation from the long-
term sediment export mean
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Rates of sediment export from glacier systems are known to be

inherently variable and the drivers and mechanisms known to be

poorly understood. Our data from Findelengletscher and subsequent

discussion leads us to advance that glacier bed morphology plays

likely a very important role in determining sediment export processes,

patterns, and rates. Specifically, the following findings are implied:

• The preponderance of closed basins in glacier beds indicates that

overdeepenings may be a significant mediating factor in glacial

sediment export from glaciated catchments, with potentially

far-reaching implications for downstream sediment dynamics,

glacier erosion rate estimation, glacier bed evolution, and

glacier flow.

• Overdeepenings can provide sediment stores that significantly

elevate export rates from glacial systems depending on their

location within the glacial system (Figure 12). Export rates inferred

from the discharge–concentration relation during August and

September 2016 at Findelengletscher imply an annual erosion rate

> 5 mm a�1, which is far greater than expected for the region and

is likely a result of the terminus region being located directly over

the overdeepening.

• Bed morphology in general is likely a strong control on seasonal

evolution of subglacial drainage efficiency and seasonal, annual,

and decadal scale sediment evacuation rates, patterns, and

mechanics (Figure 12). Because of the abundance of over-

deepenings beneath subglacial topography and the tendency for

stabilization of glacier termini on adverse slopes (e.g., Oerlemans

et al., 2011; Jamieson et al., 2014) we suggest that near terminus

bed-morphology should always be considered when examining and

interpreting glacier and catchment sediment export rates.

• Despite its inefficiency, distributed drainage at Findelengletscher

appeared able to maintain sediment connectivity (cf. Bracken

et al., 2015; Lane et al., 2017) between the glacial and proglacial

sediment systems. Bedload export, however, was likely reduced,

with coarse material likely being retained as a lag deposit within

the overdeepening (cf. Swift et al., 2006, 2018).

• Glacial-origin flushes of sediment that are unrelated to discharge

do not appear to contribute substantially to sediment yield, being

likely responsible for < 10% of load from glaciated catchments.

Nonetheless, flush characteristics may be a useful indicator of

subglacial drainage system morphology and opportunities to

further study flush form and origin should be explored.

• Though accumulation of sediment on adverse slopes is expected

to suppress erosion of bedrock within an overdeepening

(cf. Hooke, 1991; Alley et al., 2003) the maintenance of sediment

connectivity through overdeepenings means bed erosion processes

upstream may continue unabated.

Finally, we emphasize the inferential nature of our study and

conclusions in terms of the details of subglacial drainage system

morphology, the specific generation mechanisms of subglacial origin

flush events, and the implications for decadal variability in glaciated

catchment yields. Further research is therefore required to understand

the details of water routing through overdeepenings, and the implica-

tions for sediment storage and entrainment processes on seasonal to

decadal scales, to fully understand the mediating effect on annual

to decadal sediment export rates and their response to glacier retreat.
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